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A STUDY 
OF 

TRACE CONTAMINANT IDENTIFICATION 

By 

MICROWAVE DOUBLE RESONANCE S PECTROSCOF'Y 

By Richard J .  Volp ice l l i ,  O t t o  L .  S t i e f v a t e r  
and George W .  Flynn 

Research Systems, Inc . 

SUMMARY 

A microwave double resonance spectrometer has been assembled. It operates 

with pump frequencies between 12 GHz and 18 GHz and signal frequencies between 

26 .5  GHz and 40 GHz. The absorption c e l l  cons is t s  of a coi led 100' sec t ion  of 

X-band guide. 

frequency modulation of the pump rad ia t ion ,  the modulation frequency being 

100 KHZ. 

Modulation of t h e  double resonance phenomenon is achieved through 

For  each of the  f ive  molecules (CH CH COH1) CH3CH2CH2C1, CH3CH2COOH, 

(CH ) S, and CH2C120ne or two double resonance connections were se lec ted  and 
su i t ab le  f o r  the iden t i f i ca t ion  of these compounds. The amplitude of the 
double resonance s igna ls  has been s tudied as a function of the sample pressure 
f o r  both pure samples and samples d i lu t ed  i n  a i r .  I n  typ ica l  cases double 
resonance s igna ls  can be observed i n  the pressure range from 1 (JsIg t o  - 100 IJsIg. 
The smallest  de tec tab le  amount of a gas contaminant was found t o  be of t he  

order of N .3$.  

3 2  

3 2  

In  mixtures of severa l  gases with r i c h  microwave spec t ra  the double 

resonance tecbnique affords  a rapid and extremely spec i f i c  method f o r  i den t i -  

fying individual  components. 

from neighboring and/or overlapping l i n e s  with only one double resonance con- 

nect ion required t o  i d e n t i e  the  compound from which it a r i s e s .  

There is no ambiguity on account of interference 

1 



INTRODUCTION 

Acknowledgements 

Research Systems, Inc.  would l i k e  t o  acknowledge g ra t e fu l ly  the following 

people who made s ign i f i can t  contr ibut ions t o  the  conception, design and t e s t -  
ing of the microwave double resonance system f o r  contaminant i den t i f i ca t ion  

described i n  t h i s  repor t :  John D .  Baldeschwicler,* Avigdor M .  Ronn, Claude 
Woods 111, and John Rigden. 

The Double Resonance Technique 

Microwave spectroscopy came i n t o  its own with the development of the  

Since that  Stark-modulated spectrometer by Hughes and Wilson i n  1947. 
time the microwave spec t ra  o f  many molecules have been s tudied ,  

I n  microwave spectroscopy, r ad ia t ion  is passed through a waveguide c e l l  

which contains the  gaseous molecule of i n t e r e s t .  

equal t o  the  separa t ion  of molecular ro t a t iona l  energy leve ls ,  microwave 

power is absorbed. Absorption frequencies a r e  cha rac t e r i s t i c  of t h e  s t ruc tu re  

of the molecule. 

A t  microwave frequencies 

The s e n s i t i v i t y  of the absorption de tec t ion  is enhanced i n  the  S tark-  

modulated spectrometer by the introduct ion of an  a l t e rna t ing  e l e c t r i c  f ie ld  

applied t ransverse t o  the  d i r ec t ion  of the propagating microwave power. 
a l t e r n a t i n g  e l e c t r i c  f i e l d  per turbs  the  molecules through the S ta rk  e f f e c t .  
Thus, the microwave power absorbed by the gas is modulated a t  the  frequency 
of the applied a l t e r n a t i n g  e l e c t r i c  f i e l d .  Lock-in de tec t ion  a t  t h i s  f r e -  

quency provides considerable improvement i n  signal-to-noise over d i r e c t  

absorpt ion de tec t ion .  

The 

The microwave double-resonance spectroscopy, r ad ia t ion  of two frequencies 

is passed simultaneously through the gaseous sample under inves t iga t ion .  L e t  

* Professor of Chemistry, Stanford University (Consultant)  
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6 

us assume t h a t  the molecule being s tudied possesses ro t a t iona l  energy leve ls  

El, E2, and E 

elements between states 1 and 2 and between 

s t a t e s  2 and 3, t r ans i t i ons  w i l l  occur a t  f re -  

quencies given by f 

l/h (E3 - E2). 
occur i f  t he  in t ens i ty  of ei ther f 

b o t h  f l  and f ) i s  high enough t o  produce appre- 

c iab le  power sa tu ra t ion .  

been invest igated ( 2 y 4 )  which de tec t s  double 
quantum t r a n s i t i o n s .  Such a technique involves 

two microwave sources operating a t  frequencies 

f and f 2 .  One source, say fly is operated a t  
a high power l e v e l  t o  give sa tura t ion ,  while f2  

is operated a t  the  usual spectroscopic low F ig .  1 

power l eve l .  After  passing through t h e  gaseous 

(See Fig .  1) If there  a r e  nonvanishing dipole-moment matrix 
3 '  

= l/h (E2 - El) and f2  = 

of f2  ( o r  

1 
Double quantum t r ans i t i ons  can 

E3 1 
2 

A double-resonance microwave technique has 

E2 

1 
E, 

sample, f l  and f2  a r e  separated by a f i l t e r i n g  system which prevents f l  from 
reaching the c r y s t a l  de t ec to r .  

Two modulation schemes have been used - Sta rk  m ~ d u l a t i o n ' ~ )  and source 

m o d ~ l a t i o n ! ~ ' ~ )  The d e t a i l s  of the S t a r k  modulation technique is e s s e n t i a l l y  
the same as i n  a conventional S t a rk  modulated spectrometer and w i l l  not be 

discussed fu r the r .  I n  the  source modulated system, a low amplitude square 

wave voltage a t  a frequency f m  is applied t o  the high power microwave source 

a t  f l .  This modulation reaches the c r y s t a l  de tec tor  only through the  double 

resonance phenomenon. Any s ing le  resonance absorpt ion a t  f 2  is unmodulated 

and i s  not observed. Any s ingle  resonance absorption a t  f l  is modulated but 

is stopped shor t  of the c r y s t a l  de tec tor  by the f i l t e r  and hence i s  not ob- 

served. 

t h e  de tec tor  via  f and are observed. 2 

However, the double resonance events a r e  modulated v ia  f l  and a f f e c t  

Lock-in de tec t ion  a t  the  modulation frequency f provides a very sens i -  m 
t i ve  means of de tec t ing  microwave absorption. The output of a phase-locked 

detector  is displayed on a n  oscil loscope o r  recorder as a function of  the  

frequency f2 .  

The double resonance microwave technique employing source modulation has 

3 



some d i s t i n c t  advantages over the  conventional S t a rk  spectroscopic techniques. 
Chief among these advantages are: 

1. The s e l e c t i v i t y  of the double resonance technique is such that 2 
observed absorpt ion is s u f f i c i e n t  t o  i den t i fy  a molecule unambigu- 
ous l y  . 

2 ,  The double resonance spectrometer e l iminates  the necess i ty  of a high 

powered square wave generator and the S ta rk  absorpt ion c e l l .  

Proposed Research 

The purpose of  t he  research proposal submitted t o  NASA by Research Sys- 

tems Inc.  was the  development and inves t iga t ion  of double resonance microwave 

spectroscopy as a possible  means of  contaminant de tec t ion .  

search consisted of th ree  parts: 

The proposed re- 

1. The development and construct ion of a double resonance microwave 

spectrometer. 

2 .  The determination of the optimal experimental conditions f o r  observ- 
ing double resonance t r ans i t i ons  occurring i n  both pure samples and 

mixtures. 

The evaluat ion of double resonance spectroscopy as a method f o r  con- 
taminant de t e  c t ion.  

3 .  

The proposed double resonance spectrometer was t o  operate with two rnicro- 
wave sweep o s c i l l a t o r e s  - one i n  the R-band (26.5 - 40 GHz.) and one i n  the 

P-band ( 1 2 . 5  - 18.0 G H z . ) .  Di rec t  readout a t  the R-band frequencies was t o  

be provided with an  e l ec t ron ic  counter. A spec ia l  sample c e l l  was t o  be de- 
signed and constructed from a t  l e a s t  501 of coi led waveguide. 

Five gaseous compounds se lec ted  by NASA were t o  be s tudied both as pure 

gases and as mixtures. The samples chosen f o r  ana lys i s  were chloropropane, 
dimethyl su l f ide ,  methylene chloride,  propionaldehyde, and propionic ac id .  
A deeper ana lys i s  of pa r t i cu la r  gases were t o  be made under varying values 

of such parameters as pressure,  temperature, concentration, and microwave 

power. A comparison of s e l ec t ive  port ions of data were t o  be made with data  

obtained on a conventional Stark modulated spectrometer. 

With these f indings,  a n  evaluation of  t he  double resonance technique was 
t o  be made. The r e s u l t s  of t he  inves t iga t ion ,  along with the  evaluation, 

were t o  be included i n  a f i n a l  r epor t .  

4 



RESEARCH 

Theory 
This sec t ion  i s  intended t o  e luc ida te  the fundamental aspects  of double 

resonance spectroscopy and t o  provide some ins ight  i n t o  the  or ig in  of the  

cha rac t e r i s t i c  double resonance l i n e  shape. 

portance t o  the  experimental r e s u l t s  of t h i s  research.  

shape w i l l  be discussed as a funct ion of t h e  gas pressure and pump power. 

The findings w i l l  be compared with t h e  corresponding r e s u l t s  fo r  S ta rk  modu- 

l a t ion ,  which a r e  b r i e f l y  reformulated i n  Appendix. 

by Townes and Schwalow,(5) t o  which the reader  is re fer red  fo r  fu r the r  d e t a i l s .  

The l a t t e r  i s  of pa r t i cu la r  i m -  

Therefore, the l i n e  

The treatment given here is based mainly on the  paper by Javan(')and book 

Double resonance modulated microwave spectrometer. - I n  general  double 

resonance modulated microwave spectroscopy makes use of two r ad ia t ion  f i e l d s .  

E = E COS w t  

E '  = EA COS w l t  

0 

impinging upon a gas.  For a l l  cases of i n t e r e s t  t o  us  El, >> Eo and I w l  -wI is 
a "large" number. 
the second is much weaker, and the  frequencies of the  two r ad ia t ion  f i e l d s  a r e  
not c lose (general ly  they d i f f e r  by 1-20 G H z ) .  

serving ( l o w  power) f i e l d  and the  f i e l d  E '  i s  general ly  re fer red  t o  a s  the  pump 

f i e l d .  
shape as a funct ion of w. This is because we may have an i n f i n i t e  number of 
values of w I  f o r  each w. Such a s i t u a t i o n  can be r ead i ly  handled with a com- 

puter (7'8) but  we w i l l  s implify matters here by l imi t ing  w1 t o  a s ing le  d i s -  

Crete value.  

as w, Eo, EA and the  sample gas pressure a r e  varied f o r  a f ixed  w I .  

give us t h e  general  func t iona l  dependence of the  s igna l  f o r  one value of w f ,  

and t h i s  i s  approximately t h e  dependence of a l l  w1. 

That is ,  one r ad ia t ion  f i e l d  is of very high power while 

The f i e l d  E is ca l led  the ob- 

We are immediately faced with a ser ious problem i n  descr ibing our l i n e  

Then we w i l l  inves t iga te  the shape of the  double resonance s igna l ,  

This w i l l  

The general  idea of microwave double resonance spectroscopy can probably 

bes t  be s t a t e d  i n  the  following simple terms: 
1. A s t rong  (h igh  power) r ad ia t ion  f i e l d  E '  i s  used t o  modulate a mole- 

cule gaseous sample. 

5 



2 .  The modulation produced by (1) causes small but r ead i ly  detectable  ' 

changes i n  the absorption of rad ia t ion  from a second weak f i e l d  E 

by the  same gaseous system. 

3 .  The s igna l  detected i n  double resonance spectroscopy cons is t s  essen- 

t i a l l y  of the power absorbed from the  f i e l d  E.  

4. The f i e l d  E '  (high power) i s  never d i r e c t l y  observed. 

O u r  approach w i l l  be t o  consider first the  general  assumptions which enter  

the  theory and which depend upon the proper t ies  of our molecular system. 
ond, we w i l l  wr i te  down an expression f o r  the power absorbed from the  rad ia t ion  

f i e l d  E .  

spectrometer. The s igna l  depends on the power absorbed f r o m  E i n  a somewhat 

complex way. F ina l ly ,  we w i l l  consider the pressure and power dependence of 

the  s igna l  observed. 

Sec- 

Third, we w i l l  derive an  expression f o r  the signal observed with the 

General descr ip t ion  of t heo re t i ca l  considerat ions.  - We now assume tha t  
we have a gas of molecules with only three  quantum s t a t e s  1, 2, and 3 separated 

i n  energy by (En),, = huI2,  (En),, = h~13 ,  and (En)23 = huZ3. Again we take 
the average l i f e t ime  of a molecule t o  be the same i n  a l l  th ree  of  these s t a t e s  
and equal t o  T, where T is the mean time between co l l i s ions  of t he  molecules. 

A diagram of the energy l eve l  scheme is given below: 

It is not a t  a l l  obvious that the  r e l a t i v e  posi t ions of the  l eve l s  ( f o r  example 

1 < 2, 3 ;  2 < 3 )  do not a f f e c t  the observed s igna l s .  

t i e s  considered here the r e l a t i v e  posi t ions a r e  not  important and the above 

scheme has been chosen t o  correspond t o  reference 6.  

However, f o r  the  proper- 

The following quan t i t i e s  a r e  defined most of which a r e  anologous t o  the  
terms used i n  descr ibing the  ordinary S ta rk  Spectrometer: 

6 



the  number of molecules per cm3 i n  s t a t e s  1, 2, 3 f o r  the 
gas a t  thermal equilibrium 

the resonance frequency of t r a n s i t i o n  1 4 2 

the resonance frequency of t r a n s i t i o n  1 -, 3 
dipole moment of the molecular system f o r  the t r a n s i t i o n  

from s t a t e  1 t o  2 

dipole  moment of the molecular system f o r  the t r a n s i t i o n  

f r o m  s t a t e  1 t o  3 
weak r ad ia t ion  f i e l d  with frequency w near wo 

s t rong  r ad ia t ion  f i e l d  with frequency w I  near w; 

A s  before the  quan t i t i e s  k 2  Eo/2H and pI3 Ef/2Fi appear f requent ly  so  we define 

x = h2 Eo/2E 

0 

Furthermore it is assumed t h a t  

Thus the f i e l d  EA is la rge  enough t o  "sa tura te"  the 1-3 t r ans i t i on ,  the f i e l d  
Eo does not s a tu ra t e  the 1-2 t r a n s i t i o n .  - 

Power absorbed from the weak f i e l d  E .  - A t  t h i s  point we could wr i te  down 

an expression f o r  the power absorbed from the weak f i e l d  E a t  frequency w by 

the gas. 
never measured and therefore  does not concern us d i r e c t l y .  

pump f i e l d  Et does, however, a f f e c t  the shape of the power absorption curve 

f o r  the f i e l d  E (weak f i e l d )  and thus is o f  importance ind i r ec t ly .  

we wish t o  know what the power absorption a t  w is i n  the presence of s t rong  

power absorption a t  w f  which occurs simultaneously but is not measured. 
Short ly  we w i l l  wr i te  a very lengthy formula giving P (absorbed) ; however, 

first we give some qua l i t a t ive  arguments about the physical phenomena which 

occur i n  the  gaseous system. 

A s  mentioned e a r l i e r  the power absorbed from the s t rong f i e l d  El is 

The power of the 

I n  essence 

- 
- - 

w 

For weak r ad ia t ion  f i e l d s  it is  generally t r u e  that only s ingle  quantum 

7 
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t r ans i t i ons  can take place i n  a molecular system due t o  absorpt ion of  radia- 

t i o n .  
t o  2 o r  absorb a photon f r o m  f i e l d  E '  and go from s t a t e  1 t o  3. Usually 
(although not always) i f  the 1-2 and 1-3 t r ans i t i ons  are allowed, the d i r e c t  
2-3 t r a n s i t i o n  is forbidden due t o  symmetry considerations.  However, i n  t h e  
presence of a very la rge  f i e l d  a t  E' and a weaker f i e l d  a t  E it is  possible  

f o r  a molecule i n  s ta te  3 t o  simultaneously emit a photon i n t o  the f i e l d  E1 
and absorb one from the f i e l d  E i n  a s i n g l e  s t ep .  If energy l eve l  3 were lower 
i n  energy than l e v e l  one, a d i r e c t  t r a n s i t i o n  f r o m  3 t o  2 would involve absorp- 

t i o n  of a photon from both f i e l d s .  Thus the  molecule is said t o  have made a 
two quantum jump f r o m  s t a t e  3 t o  2 v ia  s ta te  1. We see  now that power absorbed 

f r o m  the f i e l d  E in  such a s i t u a t i o n  w i l l  consis t  of two separate  terms. F i r s t ,  

power i s  absorbed from E by molecules i n  s t a t e  1 making a d i r e c t  s ing le  quantum 

t r a n s i t i o n  from state 1 t o  2 .  Second, power is  absorbed from E by molecules 

i n  s t a t e  3 making a n  ind i r ec t  t w o  quantum t r a n s i t i o n  from state 3 t o  2. 

may write 

Thus a molecule can absorb a photon from f i e l d  E and go from s t a t e  l 

- 

We 

P (absorbed) = P (double quantum) 
w w 

+ P ( s i n g l e  quantum) 
w 

It tu rns  out that  t h i s  somewhat s implif ied physical p ic ture  is  a reasonably 

good descr ip t ion  of the a c t u a l  s i t u a t i o n .  
I n  order t o  s implify the following discussion we make one fu r the r  assump- 

t i o n  by r e s t r i c t i n g  the frequency w1 of the pumping f i e l d  t o  the  s ing le  value 

( 0 1  = w1 Thus the pumping f i e l d  i s  d i r e c t l y  on the 1-3 resonance t r a n s i t i o n  
a t  w:, and 

0 '  

E1 = E1 COS w1 t 
0 0 

We now write an  expression f o r  the power absorbed a t  the frequency w by 

A t  the r i s k  of the molecular system from the  r ad ia t ion  f i e l d  E = Eo cos w t .  

over-emphasis, we again point out that the power absorbed a t  frequency 

w f  = w; from Et does not  concern us i n  a microwave double resonance experiment. 

P (absorbed) = P (double quantum) -+ P ( s ing le  quantum) 
w W w 

8 



1 + 1 
2 

2 
c11 2Eo 

P w ( s ing le  quantum) = (nl -%) h q z  1 ~ 1  7 

1 + 1 

k 3  E:, 2 
1113 E '  

2[1 +(w-wo + I+[) .2] 2[1 +(-w + wo + IT!) .2] 

P (absorbed) = [*(n, + n3) - n2] hQ2 
w 

1 

171 ] T2 

+ 1 
2 

1113 E:, 2 
k 3  E:, 

1 + [W-wo 4 -  + lTl j T2 
1 -?- [Oo -W 

I n  der iving t h i s  expression ce r t a in  terms considered by Javan (reference 6)  
and ca l led  "Interference Terms" have been neglected.  This does not lead t o  

any ser ious  problem provided lp13 Eh/2fil2 T~ >> 1 . 

power absorbed i n  a double resonance experiment. 
1. The absorbed power has two maxima: 

Let us now consider some of the  cha rac t e r i s t i c s  of the  expression f o r  

2 .  A p l o t  of P versus frequency has the following form: 
w 

9 



pw 
I 

I 1 -  

wo-lYl  wO wo+l Y 1 

3 .  The maximum height of each peak is  calculated a s  follows: 

Pw (max) = p (w-w, 2 Y )  

However, we have taken E;/2hl2 T~ >> 1 s o  t h a t  we may approximate: 

4. The f u l l  width a t  half  height of each peak is almost exactly A& = 2/7 

This can be proved by s e t t i n g  
- 

and 

10 



6 

and solving f o r  w. 

l inewidth of one peak from the other peak. This is i n  general  qu i t e  

small and can be neglected.  

set 

Such a der iva t ion  ignores the  contr ibut ion t o  the 

A more rigorous deviat ion would be t o  

and then solve f o r  t he  four  r e s u l t i n g  values of w. 

From ( 3 )  we see t h a t  the peak in t ens i ty  of a double resonance absorp- 
t i o n  depends 

a .  
on E:) and 

b .  is  independent of pressure because it depends upon the product n, 

T which is  pressure independent ( see  Appendix f o r  discussion on S ta rk  

modulated spectrometer).  Note, however, t h a t  th i s  is only approxi- 

p t e l y  t rue  s ince  it assumes 1/41Yl2T2 << 1. 

l i n e a r l y  with pressure because Aw, = 2/T ( see  Appendix f o r  discussion 

on S ta rk  modulated speutrometer).  

5. 

l i n e a r l y  upon the power i n  the  observing f i e l d  ( tha t  is, l i nea r ly  

6 .  ,The l inewidth of - each of the two  doubly‘resonance peaks increases , 

2 

7 .  The separat ion between the two peaks i n  the double resonance absorp- 

t i o n  depends l i n e a r l y  on the  square root  of the  power i n  the pumping 

f i e l d  (not  - on the  power i n  the weak o r  observing f i e l d ) .  

t he  separat ion 21yl = 21k3E6/2El depends on E;. 
That is, 

We may now compare the cha rac t e r i s t i c s  fo r  the  power absorbed i n  the  

s ing le  and double resonance cases: 

1. The s ingle  resonance power absorbed shows a s ing le  peak of width 

AWL = 2/7 while the double resonance power absorbed shows two peaks 

of width Awl = 2/7. 

The maximum peak height  f o r  both s ingle  and double resonance power 

absorptions is  pressure independent, while the linewidths in both 
cases are l i n e a r l y  related t o  pressure.  

2 

2 
2. 

11 



r( 

3 .  The peak height  f o r  both s ing le  and double resonance power absorp- 

t ions  increases l i n e a r l y  with the  power i n  the observing o r  weak 

f i e l d  This holds, however, only as long as 1pI2 Eo/2BI2 T~ << 1. 

Dependence of s igna l  s t rength  on power absorbed. - We have r e s t r i c t e d  our 
pump f i e l d  t o  a s ing le  frequency w1 such that 

E '  = EA COS 
0 

L e t  us now squarewave modulate E '  a t  100 kc/sec s o  that it has the  following 

form: 

0 < t < 5 ysec 

5 < t < 10 ysec 

- E '  = E l  COS ut t 

E '  = 0 
0 0 

- -  
Such a descr ip t ion  assumes a 100% amplitude modulation of  E l  a t  a r a t e  of 100 

k/csec. 
modulation scheme such that 

I n  p rac t i ce  the  double resonance spectrometer rakes use of a frequency 

0 < t < 5 ysec 

5 < t < 10 ysec 

- -  El = EA COS w h t  

E '  = E A  COS 6 t  - -  
However, provided 16-(0;1 > 10 MHz, E l  = E1 cos 6% is  e s sen t i a l ly  ine f f ec tua l  a t  
modulating the gaseous molecular sample because E l  is too f a r  from the  resonance 

of t he  1-3 t r a n s i t i o n .  Thus f o r  a l l  p r a c t i c a l  purposes E l  = 0, 5 < t < 10 

0 - 

- c  wO 

ysec as far as the gas is concerned. 

I n  the  presence of the  s t rong  pump f i e l d  E t ,  the  power absorbed a t  frequency 

w is j u s t  the  double peak expression given e a r l i e r  f o r  the double resonance ex- 

periment. However, when E l  = 0 the  power absorbed a t  w is simply that given by 

the ordinary expression stated i n  S ta rk  modulation spectrometers. Thus we have 

f o r  E l  = 0 
-I__ 

Using this expression along with the one given earlier f o r  the double reso- 

nance power absorpt ion a t  w, we can wr i te  down P f o r  t he  case where E l  is 
w 
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b modulated i n  the  squarewave fashion described above. We obtain 

1 1 
+ 

f o r  0 < t < 5 psec - 

f o r  5 p e e  < t < 10 psec - 

with the assumptions 

E l  = E l  COS U, t 
0 0 

E ' = O  

To s implify the following discussion l e t  us define 

0 < t < 5 psec P, = P, (DR) - 

P, = P (SR) 5 < - t < 10 psec w 

Note that both P 

depending on the  temperature, pressure,  e t c . )  even though P, i s  not .  

(DR)  and Pw (SR) are independent of time ( T  is  a constant 
w 

13 



The power absorbed i n  a double resonance spectrometer where the strong 

f i e l d  is modulated as above i s  therefore a squarewave. In  order t o  determine 

the s ignal  observed by the spectrometer, we must analyze t h i s  squarewave into 

its Fourier components. T h i s  is because t h e  electronics used i n  a double 

resonance ( o r  a S tark)  spectrometer a r e  not suf f ic ien t ly  broadbanded t o  pass 

the en t i re  squarewave undistorted. It is well known that a squarewave has 

only odd harmonics o f  the basic (100 kc/sec) component, a 300 kc/sec component, 

a 500 kc/sec component, e tc .  

a l l  but the 100 kc/sec component s o  that we need obtain only the 100 kc/sec 

par t  of the Fourier Transform. 

We w i l l  assume that the amplifiers used r e j ec t  

Fourier transform o f  power absorbed. - We have 

PW = PW (DRJ 

Pw = Pu, (SR) 

o < t < 5  - 

Let us change variables of time from t t o  x where 

x = Trt/5 

giving 

5 < t < l O  - 

P (X) = 
W 

The Fourier se r ies  of P (7) may be writ ten 
W 

pW (3 = a0/2 + f (an cos G + bn s i n  6) 
n=l 
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a ='s P (x) cos d? n T r  w 

-Tr 

By di rec t  subst i tut ion it can readily be 

a = P (DR) 
o w  

bo = 0 

a, = 2/n (Pw 

b, = 0 

Since we a r e  assuming t h e  electronics of 

monics higher than the first one. 
apparatus is just  proportional t o  

shown that 

+ P (SR) 
w 

our spectrometer t o  re jec t  a l l  har- 

The signal seen on the double resonance 
P, (2) where 

- 
= a0/2 + a, cos x 

o r  

Pwp+) = 3 ( P  (SR) + Pw ( D R ) )  + 5 (Pw (SR) - Pw ( D R ) )  cos T r t  - 
w 5 

with t i n  microseconds. 

constant D.C. l eve l  on the spectrometer and can be neglected for ordinary cap- 

ac i t ive ly  coupled amplifiers.  We a re  thus l e f t  with a double resonance signal 

The term 3 (Pw (SR)  + Pw (SR))  merely appears as a 

2 T r t  S (double resonance) - - (Pw (SR) - Pw ( D R ) )  cos 5 . 
w 7T 
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The s igna l  S 

microwave spectrometer is therefore  a 100 kc/sec cosine wave whose amplitude 

is  j u s t  proportional t o  

amplified by the e lec t ronics  of a double resonance modulated d 
W 

If phase sens i t i ve  de tec t ion  locked t o  t h e  100 kc/sec modulation frequency is 
used a f t e r  the  ampl i f ie rs ,  the  s igna l  S 

amplitude of cos nt/5. 
is p r o p o r t i o n a l  only t o  the  signed 

w 
That is 

S N Pw (SR) - P, (DR) . 
W 

The word signed is  important f o r  a phase de tec tor  preserves information con- 

cerning whether PW (SR) - P, (DR)  is pos i t ive  o r  negative.  

General l i n e  shape. - We have shown 

-P ,  (SR) - Pw (DR)  . 

For both P 

t r u e )  S, has the following shape: 
(SR) and P (DR)  pos i t ive  (which is generally,  though not always 

W W 



9 

We note t h a t  the  l i n e  shape is j u s t  t he  superposit ion of two separate  curves 
of opposite s ign .  

a s ingle  peak curve (+ Pw (SR) ) , 

One is a double peaked curve (-Pw ( D R ) )  and the  other is 

The ana ly t i c  form f o r  S is given by: 
w 

Power and pressure dependence of S . - Now t h a t  an  expression has been 

derived f o r  S i n  the  case of a double resonance modulated microwave spec- 

trometer it i s  possible  t o  consider the pressure and power dependence of t h i s  

l i n e  shape. Let us rewri te  S as 

w 

w 

Furthermore, l e t  us make the  r a the r  d r a s t i c  assumption 3 (nl + Q )  - - ns . 
w i l l  s implify the  following discussion somewhat and should not a f f e c t  the  
general  trend of the r e s u l t s  which a r e  obtained. In t h i s  case Sw becomes 

This 
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Let us first consider the term outside of t he  brackets 

This term has the  following propert ies :  

1, It depends l i n e a r l y  on the power i n  the observing f i e l d  ( i . e  . , depends 

l i n e a r l y  on E 2 ) ;  however, note we always assume h2 Eo/2'h << 1 . 

pressure (see e a r l i e r  d i scuss ion) .  

0 

2 .  It is  independent of pressure because T (nl -n2) is independent of 

F ina l ly  we consider the  propert ies  o f  the bracket term 

2 1 

1. It cons is t s  of th ree  peaks with maxima occurring a t :  

u) = wo 
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2 .  The width o f  each peak a t  ha l f  maximum is Aw, = 2/7 and is thus l i n -  

ea r ly  dependent upon pressure ( p  = C/T where c is  a cons tan t ) .  
The peak heights  of each of the three  peaks i s  most emphatically - not 
pressure independent. This r e s u l t  is  the most Important one which 
has been derived and is the most d r a s t i c  departure from the r e s u l t s  
obtained f o r  s i n g l e  resonance S ta rk  spectrometers. Let us, therefore ,  

consider th i s  i n  more de ta i l .  The maximum amplitudes f o r  each of the 
three  peaks a r e  r ead i ly  seen t o  be: 

- 2 

3 .  

For w = wo 

Note Pl = P3. We see now t h a t  each peak height depends upon the  parameter 

19 



which is e s s e n t i a l l y  a measure of the amount of s a tu ra t ion  achieved a t  t he  

pumping ( o r  high power) frequency u)f = w; . 
a l i n e a r  funct ion of t h e  power in  the  pumping f i e l d  (depends upon EA2);  how- 

ever, s h c e  T = c/p, 1 1 . ~ 1 ~  E;/2hI2 T~ depends upon the square of one over t he  

pressure ( l / p ) .  

divided by four .  

Furthermore, t h i s  parameter is 

Thus, i f  p is  double, T i s  halved and 1p13 E;/2EI2 T~ is 

I n  order t o  ge t  a p r a c t i c a l  f ee l ing  f o r  the  e f f e c t  of pressure and power 
on the peak heights  l e t  us consider t he  behavior of these peak heights  f o r  
t yp ica l  pressures ,  f i e l d s ,  and k3 ' s .  We take 

k3 = 0.7 Debye = 0.7 X lo-'' esu-cm 

T = 5 X lov7 sec  ( p  Z l o p  of Hg) 

23  = 2 . 1  x erg-sec 

E; = 5.7 volts/cm 

This E l  corresponds t o  a power l eve l  of 100 m i l l i v o l t s  in a cross-sect ional  
0 

area  of 2.32 cm2 (X-Band waveguide). 

through the equation 

The power P and f i e l d  E; are r e l a t ed  

where c is the  ve loc i ty  of l i g h t  and A i s  the  cross-sect ional  area f o r  propa- 

ga t ion  of t he  f i e l d  ( see  reference 1, pp. 340, 377). All u n i t s  are c .g .s .  

Using the  r e l a t i o n s  

i t  can ea$ i ly  be shown 

1 e rg  = 1 s ta t  coulomb-stat v o l t  

1 stat coulomb/cm - 1 s ta t  v o l t  
1 s t a t  v o l t  - 300 v o l t s  

that 
E; = 8.7 x 
P i n  ergs/sec 

A i n  cm2 
1 m i l l i w a t t  joules  = io4 ergs 
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The values chosen f o r  T and h3 a r e  typ ica l  empirical values found in the 

microwave range by use o f  standard S ta rk  modulation spectroscopy. 

Define: 

Using the values above f o r  p13, T, e t c .  we get 

(0.7 x ioo-18)2 c5 ( 5  x 1 0 - ~ ) ~  6 =  
( 2 . 1  x 10-27)2 

o r  6 10, f o r  Power = 100 mi l l iwat t s .  

A s  shown e a r l i e r ,  the peak heights f o r  the double resonance l i n e  shape 
a r e  : 

For w = wo 2 I E$?hI : 

P, = P3 = 2/(1+6) - 1/(1+46) - 1 

FOP w = w : 
0 

P,= 2 (1 - 1/1 + 6 )  . 

Thus ; 

P, = 2/11 - 1/41 - 1 = -0.84 

P2 = 2 (1 - 1/11) = 1.82 

Thus we have values f o r  P1 and P2 f o r  a pressure of 10  1.~ of Hg ( T  = 5 X 

and a pumping r ad ia t ion  f i e l d  of 100 m i l l i w a t t s .  
a s  above, we can r ead i ly  ca lcu la te  values f o r  6 as the pressure is changed 'and 
thus get values f o r  P, , P, with E; a constant .  P, , 
P2, 6 versus pressure f o r  EA = 5.7 v/cm (Power of 100 m i l l i w a t t s ) .  

s ee )  

Using the exact same procedure 

The following t ab le s  give 

21  



TABLE I. - DEPENDENCE OF PEAK HEIGHT ON PRESSURE AND CONSTANT POWER 

Pressure 
7iEcG) 

10 

20 

40 

Power 
- s EL - p2 (milliwatts) 

10 -0.84 1.82 100 

2.5 -0.52 1.42 100 

0.63 -0.03 0.76 100 

It is not p a r t i c u l a r l y  va l id  t o  
than 1 because much of the  preceding 

Pressure 
IG-G) 

10 

20 

40 

car ry  t h i s  Table t o  values of 6 much l e s s  

treatment depends upon the  approximation: 

Peak Height Power 
p2 ( m i l l i w a t t s )  - Pl  - -6 - 

10 -0.84 1.82 100 

10 -0.84 1.82 1600 

10 -0.84 1.82 400 

The trend of t he  r e s u l t s ,  however, i s  qu i t e  c lear :  The peak heights of the 
double resonance s igna ls  decrease ( i n  a roughly l i n e a r  fashion) with increas-  

ing pressure.  This is i n  add i t ion  t o  the  broadening which a l so  occurs f o r  
these peaks s ince Aw, = 27. Thus f o r  double resonance modulated microwave 

spectroscopy w e  f i nd  that the l inewidth increases l i n e a r l y  with increasing 
2 

pressure and the  peak height decreases with pressure.  This is i n  cont ras t  t o  

the S ta rk  modulated spectrometer where the  l inewidth increased l i n e a r l y  with 

increasing pressure but  t he  peak height  was independent of pressure.  
To  o f f s e t  t h e  decrease i n  peak height  with increasing pressure,  the  power 

i n  the  pumping f i e l d  can be increased as the  pressure is increased. I n  Table I1 

are given the  values of power needed t o  keep 6 = 1 0  as the pressure i s  increased. 

TABU 11. - DEPENDENCE OF PEAK HEIGHT WITH 
INCREASING PRESSURE AND PUMP POWER 
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We note immediately t h a t  a d r a s t i c  increase i n  power is necessary t o  

o f f se t  the  e f f e c t  of  increasing pressure on the peak height .  It is important 

t o  note that the  widths of the three  peaks s t i l l  increase l i n e a r l y  with pres- 

sure  even i f  t he  power of the pumping f i e l d  i s  increased. 
no way t o  o f f se t  t h i s  pressure broadening phenomenon. 

There i s  apparent ly  

It is of some i n t e r e s t  t o  ask why the peak height  of a double resonance 
s igna l  depends upon pressure when i n  f a c t  no such problem arises f o r  a S ta rk  
modulated spectrometer. 

spectrometer the  modulation scheme is one where a n  a l t e r n a t i n g  (zero  based) 

e l e c t r i c  f i e l d  is applied t o  a molecular gas. The e f f e c t  on the gas is t o  

cause the center  frequency o f  absorpt ion t o  a l t e r n a t e  between wo and wo+ z 

where E is the S ta rk  sh i f t .  

almost a l l  cases and t o  a very good approximation independent of pressure.  

I n  the double resonance case the modulation scheme is one which has an  e f f e c t  

on the gas proport ional  t o  lk3 E1/2El2 T~ = 6 .  

e f f e c t  is  grea t ,  while f o r  small 6 there  is  r e l a t i v e l y  l i t t l e  i f  any modula- 

t i on .  However, 6 depends c r i t i c a l l y  on the  pressure due t o  the presence of 

T ~ .  

Such a s i t u a t i o n  is  analogous t o  the  case i n  a S ta rk  modulated spectrometer 

where the S ta rk  s h i f t  = is very small because the molecule under study has a 

sml l  dipole  moment. I n  t h i s  case the l i n e s  a r e  said t o  be "incompletely" o r  

"under" modulated. 
upon the dipole  moment and is pressure independent. I n  the  double resonance 
case the under modulation depends upon both the  dipole moment pi3 and the  

pressure T .  

The answer turns  out t o  be qu i t e  simple. I n  a S tark  

The c ruc ia l  point t o  note here is  that E is i n  

For la rge  6 the modulation 
0 

A s  pressure increases T decreases and thus the  modulation decreases.  

I n  the S ta rk  spectrometer such an  under modulation depends 

Summary on pressure broadening of a S ta rk  modulated spectrometer. - 
Signal  - [(nl -%) T ]  2 1  X l2 hv/l + (w-co,)~ 7'. 

sa tu ra t ion .  
This is i n  the absence of 

1 
= 4 , (w-wo)2 72 = 1 , w = u) + - . 1 Half width: + w-wo . 

F u l l  width a t  ha l f  height:  Aw = 2/7 . T, the l i fe t ime,  is inversely 

1" TZ 0 - 7  

proportional t o  pressure.  If double pressure,  T goes down by a f ac to r  of 2. 

Resul t  : 
1. Maximum s igna l  height  is independent of pressure.  

2. L i n e  width i s  d i r e c t l y  proportional t o  pressure.  
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Double resonance modulated spectrometer. - Assume the two pump frequencies 

i n  the square wave a r e  4 and u&. 
quency of the  pump) but  lwzf - ~ $ 1  >> 1. 

I n  t h i s  case the  l i n e  shape is 

For s impl ic i ty  take (y’ = (resonance f r e -  

This is f o r  lyl” T“ >> 1, where y = p EA/2Ei. T is molecule l i f e t ime .  

Here Eil, i s  the amplitude of the  pump f i e l d  and the  power o f  the pump f i e l d  is 

1. The f u l l  width a t  half  height f o r  a l l  th ree  peaks is Z/T. 

l i n e  width is d i r e c t l y  proportional t o  the  pressure.  This is  the 
Thus the 

same as the ordinary S ta rk  modulated case.  

Take ly12 T~ = 10. 

because the s igna l  heights  i n  t h i s  case depend upon Iyl” T ~ .  

following r e s u l t s  a r e  approximate a s  we vary the pressure.  

2 2.  The s igna l  heights  vary as the pressure changes 

The 
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1.0 

T y l o  TO 

4 
Pressure increasing 

L T 

SI and S, as functions a t  the l i f e  time T 

Results : 

1. 

2.  

3 .  

Signal  height decreases roughly l i nea r ly  with increase i n  pressure.  

Line width is  d i r e c t l y  proportional t o  pressure.  

To o f f se t  I1 - 1 (decrease i n  s igna l  with increased pressure) the 

power must be increased by a f ac to r  of 100 f o r  every fac tor  of 10 

increase i n  pressure.  
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Instrumentation 
6 

The f i rs t  object ive of th i s  contract  was the fabr ica t ion  of a laboratory 
model, source modulated double resonance microwave spectrometer. The double 

resonance microwave spectrometer i s  p ic tured  i n  Fig. 2. 

The design and development of the double resonance spectrometer was s t rongly 
That i s ,  the instrument was developed f o r  ap- influenced by i t s  projected use.  

p l i c a t i o n s  t o  t r ace  contaminant detect ion and iden t i f i ca t ion .  
available subunits are employed i n  the design o f  the instrument whenever possible .  

Commercially 

By this  method, the first t e s t  experiments were performed j u s t  four  months a f t e r  
r ece ip t  of the contract .  

The double resonance microwave spectrometer can be considered i n  terms of  
three subsystems: the microwave system, the e lec t ronic  system, and the vacuum 

system. To f a c i l i t a t e  the descr ipt ion o f  the instrument, each of  these sub- 
systems w i l l  be discussed ind iv idua l ly .  

Microwave system - The diagram Fig. 3 ind ica tes  the f i n a l  working micro- 
wave configuration. Since the microwave system i s  a n  assembly of commercially 

ava i l ab le  u n i t s  no attempt t o  describe i n  detai l  the e lec t ronic  workings of 
the subunits w i l l  be made. 

Two microwave sources are required f o r  a double resonance absorption. Ab- 

sorpt ion frequencies are d i c t a t ed  by the cha rac t e r i s t i c  molecule under inves t i -  

gat ion.  This has been covered i n  the previous sec t ions  o f  t h i s  repor t .  
The first microwave source o r  i r r a d i a t i n g  s igna l  frequency o s c i l l a t o r  is 

a Hewlett Packard type 6 9 0 ~ .  

c i l l a t o r  capable of a broadband sweep covering the frequency range of 26.5 GHz 

t o  40 GHz. 
a t  any pre-selected frequency within the 26.5 GHz t o  40 GHz i s  general ly  a l l  
that  i s  required. 
5 milliwatts of power only 2 t o  3 mw a r e  needed t o  produce an  absorption i n  

t h i s  range. 

search operation which obviously suggests a n  extremely laborious and time- 
consuming procedure. Therefore, the a b i l i t y  t o  measure one of the two microwave 

frequencies and s e l e c t  a A f  sweep over this region would g r e a t l y  s lmplify the 

experiments. The commercially ava i lab le  system f o r  t h i s  requirement i s  pro- 
vided by a Hewlett Packard sweep o s c i l l a t o r  s t a b i l i z a t i o n  system type K03-8690. 

This u n i t  i s  a conventional backward wave os- 

For use i n  our experiments a recur ren t  A f  of approximately 30 mc/sec 

Although the source i s  capable of generating approximately 

The use of two microwave frequencies immediately ind ica t e s  a double 
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BLOCK DIAGRAM 

r, 
P-Band Crystal p - m  

I /  
I 
I 

d 

MICROWAVE SYSTEM AND 
C E L L  CON FIGURATION 

-P-Band IO db 
Coupler 

--- 

c 

FREQUENCY 

R-Band 26.5 kMHz to 40.0 kMHz 

Crystal Current 

P-Band 12.4 kMHz to 18.0 kMHz 

+ P to R Band Tapered 
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This system provides the means of swept-frequency, phase locked opera- 

t i on  i n  the i r r a d i a t i n g  frequency range of 26.5 GHz t o  40 GHz with a d i r e c t  
frequency readout supplied by a modified HP 52451; counter with type 525211 

presca le r ,  shown i n  Fig. 4. 
The R-Band microwave phased locked system cons is t s  of the following 

un i t s :  

RF out 

0sc.Synchronizer 

Fig. 4 

The output as obtained from the R.P. s o u r c e < i s  passed through a f l a p  
a t tenuator  f o r  cont ro l l ing  the power used. An R-band t o  P-band tapered t r ans i -  

t i o n  (R-band = 26.5 GHz t o  40 GHz)  (P-band = 1 2 . 4  GHz t o  18 GHz) i s  next  con- 

nected t o  a 3db P-band d i r ec t iona l  coupler. This i s  followed by a P - X band 

tapered t r a n s i t i o n  separated from the 100' X-band sample c e l l  by a mica window. 
The mica window permits the microwaves t o  pass  through i n t o  the sample c e l l  with 
e s s e n t i a l l y  no a t tenuat ion ,  thus providing a method t o  contain the gaseous 

sample i n  the c e l l .  
A second microwave source ( i n  t h i s  case the pumping frequency) i s  supplied 
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by an  Alfred sweep o s c i l l a t o r  type 650. 
backward wave o s c i l l a t o r  covering the  frequency range of 12 .4  GHz t o  18 GHz. 

This u n i t  a l s o  contains a conventional 

The reason f o r  t h i s  s e l ec t ion  was the v e r s a t i l i t y  of t h i s  instrument. 

Changing the  microwave regions (bands) i s  done by simply plugging i n  selected 
backward wave o s c i l l a t o r s  ava i l ab le  from the  manufacturer. 

vides the  pump power and i s  frequency modulated. 

tained by applying a symmetrical low voltage square wave (100kc) coupled 
through a phone jack i n  the  rear o f  the instrument t o  the h e l i x  voltage of the 

BWO. The depth of frequency modulation is  adjustable  by se l ec t ing  the peak t o  
peak voltage of the appl ied lOOkc square wave. 
a l s o  provided i n  t h i s  unit; however, the  mode of operation required f o r  the  

pumping frequency i s  f ixed  frequency with maximum power. 
u n i t  are passed through a P-band low pass f i l t e r .  

of the  pump frequency from coupling i n t o  the system. 

added t o  prevent the higher frequency (R-band) from feeding i n t o  the  P-band 

source. From t h i s  po in t  the s ignal  i s  fed i n t o  the coupling arm of the  P-band 

3db coupler. 

t he  100' sample c e l l ,  shown i n  Fig. 5. 

This source pro- 

Frequency modulation i s  ob- 

Swept frequency capab i l i t y  i s  

Microwaves from t h i s  
This u n i t  prevents harmonics 

A P-band i s o l a t o r  i s  

The R-band and the P-band microwaves are mixed and passed i n t o  

Since the d i r ec t iona l  coupler does not provide an idea l  method of coupling 
two frequencies, r e f l e c t i o n s  a t  d i s c r e t e  R-band frequencies r e su l t ed  i n  a 

l o s s  of R-band power. 

s lug f o r  the  absorbing material i n  the  coupling arm. 

This was g r e a t l y  reduced by subs t i t u t ing  a brass tuning 

The microwaves a f t e r  passing through the  gaseous sample of i n t e r e s t  con- 

tained i n  the  100' X-band c e l l  are then coupled through a X-P-band tapered 

t r a n s i t i o n ,  P-band lOdb coupler, and P-R-band tapered t r ans i t i on .  This sect ion 
re jects  the  P-band microwaves. Additional f i l t e r i n g  i s  provided by an  R-band 

i s o l a t o r .  The i s o l a t o r  a l s o  reduced any r e f l e c t i o n s  which could be produced 

a t  t h i s  point .  
F ina l ly  the R-band absorption power i s  detected by a c r y s t a l .  A monitor- 

ing of the  pump power (P-band) i s  achieved by sampling t h i s  frequency from the  

coupling arm of the  P-band lOdb coupler and detect ing the power as received a t  
the  P-band c r y s t a l  de t ec to r  and measuring t h i s  power with a standard current  

meter . 
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Electronic  System.- The e l ec t ron ic  system i s  shown i n  a block diagram on 

the following page, Fig. 6. The system i s  a n  assembly of commercial u n i t s  with 

the exception of the 100 kc tuned network, pre-amplifier,  and 100 kc c rys t a l  

o s c i l l a t o r  sync un i t .  
Since the microwave absorption s igna l  received by the c rys t a l  detector  i s  

of low amplitude, i t  i s  necessary t o  e l iminate  in te r fe rences  and t o  reduce the 

noise  l e v e l  of the system by using se l ec t ive  amplif icat ion.  For this purpose, 
a network tuned t o  the 100 kc s igna l  frequency i s  coupled to  the c rys t a l  de- 

t e c t o r .  This u n i t  operates  as a f i l t e r  a t tenuat ing  the unwanted frequencies 

by the Q f ac to r  of the network. The pre-amplif icat ion of the s igna l  i s  per- 
formed by a spec ia l ly  designed u n i t  shown i n  the schematic, Fig. 7. The input 

s tage  of th i s  u n i t  i s  a high ga in  tuned cascade amplifier. This is followed by 
a second tuned s tage coupled t o  an emi t te r  follower output f o r  impedence match- 

ing t o  a lock-in de tec tor .  Provision f o r  a (4 )  decade se l ec t ion  o f  the a m p l i f i -  

ca t ion  f a c t o r  is  made by a ro t a ry  switch. The maximum gain ava i lab le  i s  g rea t e r  

than 10 . The absorpt ion s igna l  i s  then passed through the Princeton lock-in 

detector .  This u n i t  i s  e s s e n t i a l l y  a detect ion system capable of operating 
with an extremely narrow equivalent noise  band width. Its function is  t o  
s e l e c t  only the 100 kc c a r r i e r  [containing the absorption l i n e  as amplitude 

modulation] and t o  recover the s igna l  a f t e r  t ranspos i t ion  t o  zero frequency. 

5 

Time constant  f i l t e r i n g  can be se lec ted  as e i t h e r  6db or  12db per  octave. 

The demodulated s igna l  is  then t raced on a s t r i p  cha r t  recorder.  
A dual beam Tektronix osci l loscope i s  used t o  monitor the detected s igna l  

and R-band c r y s t a l  cur ren t  simultaneously. 

the phase s e n s i t i v i t y  de tec t ion  i s  provided by a Hewlett Packard square wave 

o s c i l l a t o r .  This u n i t  a l s o  suppl ies  the low voltage square wave s igna l  used 

f o r  frequency modulating the P-band sweep o s c i l l a t o r  described i n  Section 1 

(microwave system). 

The reference s igna l  (100 kc) f o r  
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Block Diagram - Electronic System 
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Vacuum system.- The vacuum system provides the means of evacuating the 

sample c e l l  and handling the gaseous samples which were studied. The main com- 
ponents of the vacuum system are a fo re  pump, an o i l  diff’usion pump, l i q u i d  
ni t rogen t raps ,  gas en t ry  p o r t s ,  and pressure gauges. A schematic diagram of . 

the vacuum system i s  shown i n  Fig. 8. 
The demands of the vacuum system are more severe f o r  a double resonance 

microwave spectrometer than f o r  a conventional microwave spectrometer. The 
more s t r ingen t  demands a r i s e  because of the differences i n  the sample c e l l s .  

Par t  of the advantage of the double resonance technique i s  the increased path 

length through the sample t h a t  the technique allows. In  the conventional 
microwave spectrometer, the length of the sample c e l l  i s  l i m i t e d  t o  about 10 
f ee t .  This l imi t a t ion  i s  due to  the addi t iona l  a t tenuat ion  of the Stark septum 
and i t s  supporting t e f lon  insu la t ion .  

The sample c e l l  was fabr ica ted  from X-band waveguide and designed f o r  t h i s  
contract .  This i s  a c o i l  100 f e e t  long. Diffusion through the coi led sample 

c e l l  i s  very slow even f o r  l a rge  pressure gradients .  
a t  one end of the c e l l ,  several  minutes a r e  required t o  reach pressure equ i l i -  
brium. 

I f  a sample i s  introduced 

For these reasons, the vacuum system was designed so t h a t  the sample c e l l  
could be evacuated from each end simultaneously. Also, samples could be i n t r o -  
duced t o  the c e l l  from each end simultaneously. 

made by Consolidated Vacuum were placed near each end of the sample c e l l .  
monitoring the pressure a t  each end o f  the c e l l ,  i t  could be determined when 

the pressure had equi l ibrated.  

P i ran i  gauges (Model GP-001) 

By 

A fore  pump with high pumping speeds i s  mandatory. The fo re  pump used 
i n  t h i s  system i s  Model H-14 made by Central S c i e n t i f i c  Go., Inc. and has a 

pumping speed of 4.94 cu.ft./min. 
desirable .  

Torr. 

An even higher pumping speed would be 
-6 

A s ingle-s tage diffusion pump provides an  ul t imate  vacuum of 10 

The Pi ran i  gauges a r e  r e l i a b l e  over a short-time basis, but ,  due t o  aging 
of the fi lament and in t e rac t ion  with the gaseous samples, they should not  be 

r e l i e d  on exclusively.  For r e l a t i v e  pressure measurements, however, the P i ran i  
gauges are very convenient. 

pressure gauge has been incorporated i n t o  the vacuum system. 

For more prec ise  pressure measurements, a meroury 
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Measurements 

The major goal of t h i s  research e f f o r t  is  t o  determine whether the double 

resonance technique can be appl ied successful ly  f o r  the iden t i f i ca t ion  of a 
gaseous compound when contained as a t race  contaminant i n  an atmosphere o r  
when represent ing a cons t i tuent  of  a complex mixture of gases.  Clearly,  before 

th i s  problem can be tackled the following questions have t o  be answered: F i r s t :  
what are the pump and s igna l  frequencies a t  which a double resonance i s  obtained 

f o r  the gases i n  question? Second: how sens i t i ve  i s  the double resonance s ig-  
na l  amplitude aga ins t  pressure var ia t ions  and i n  what pressure range can the 
double resonance be observed? Third: how does the double resonance s ignal  

change with temperature? 
To answer these three questions the f i v e  contract  molecules were first 

s tudied when present  i n  the absorption c e l l  as pure samples. 
To obtain an estimate of the minimum detectable  concentration of a gas 

when contained i n  an atmosphere, experiments were conducted on samples 

d i lu ted  with a i r .  This work i s  described i n  the second sect ion.  
The t h i r d  sec t ion  f i n a l l y  r epor t s  double resonances obtained when three 

o r  four gases a r e  simultaneously contained i n  the absorption c e l l .  

I n  cont ras t  t o  these experiments, which are concerned with data charac- 
t e r i s t i c  of the molecules under inves t iga t ion .  The l a s t  sec t ion  repor t s  on 

parameters inherent i n  the instrument: The ul t imate  s e n s i t i v i t y  of the double 

resonance spectrometer is estimated and experimental comparisons with Stark 
spectra  a r e  reported.  The e f f e c t  of the l imi t a t ion  i n  the ava i lab le  pump 

power on the double resonance s ignal  amplitude, and hence s e n s i t i v i t y ,  has been 

examined a l so .  
The following sub-sections a r e  concerned with bas ic  information about the 

f i v e  cont rac t  molecules. Each sect ion i s  headed by a shor t  resume of general  

spectroscopic proper t ies  of the pa r t i cu la r  compound. 

f o r  the subsequent se lec t ion  of double resonances. Besides the t r i v i a l  r e -  
quirement that  the double resonance connections must f a l l  within the frequency 
ranges of the spectrometer, the most important f ac to r s  i n  se lec t ing  a su i t ab le  

double resonance are: The i n t e n s i t y  and shape ( f i n e  s t ruc tu re )  of the s ignal  

l i n e ,  the dipole  moment matrix element of the pump l i n e ,  and the microwave 
power ava i lab le  a t  the frequency of the pump l i n e .  The transmission proper t ies  
of the waveguide system had a l s o  some influence on the se lec t ion  of double 

This information i s  needed 
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resonance connections. 

In  studying the pressure dependence of the double resonance s ignal  am- 
p l i t ude  the l a t t e r  was defined as  the difference between the peak height  of 

the center  l i n e  and the average height  of the double quantum peaks. 

pressure quoted i n  t h i s  work were the readings taken from a commercial P i ran i  

pressure gauge. Since the cha rac t e r i s t i c s  of th i s  instrument changed fre- 

quently and somewhat uncontrollably an  uncertainty of + 20 

allowed on the absolute  pressure values quoted. 

The 

yHg should be  - 
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Prop ional  deh yde ! 92 Prop ional  dehyde 

formations which are separated from each 
more stable conformation is  the cis-form 

C-C-C = 0, i s  planar .  The dipole  moment 

Fig. 9 )  e x i s t s  i n  two rotameric con- 

other  by an  energy of M 900 ca l .  The 

i n  which the heavy atom skeleton, 

has approximately equal components i n  
the - a and - b d i r ec t ion  of the pr inc ipa l  a x i s  system. (pa = 1.11 D, $ = 1.85 D, 

I-1, =.O,  p t o t a l  = 2.52) .  

the asymmetry and several  low lying v ibra t ions  give r i s e  t o  a very dense micro- 
wave spectrum f o r  the cis-form. 

The two dipole moment components i n  conjunction with 

The l e s s  s t ab le  conformation i s  a gauche form, i n  which the methyl group 

This ro t a t ion  causes the moments i s  ro ta ted  by - 130" out of the C-C = 0 plane. 
of i n e r t i a  about the b- and c- a x i s  t o  become similar t o  each other .  Hence the 

microwave spectrum becomes typ ica l  of a (acc identa l ly)  near p ro la t e  ro to r ,  i . e . ,  
the spectrum cons i s t s  of groups of 1 ~ 1  -R-branch t r ans i t i ons  separated from each 
other  by - ( B  + C ) .  

- - 

a 

Selection of double resonances: The g rea t e r  number and higher i n t e n s i t y  
of the microwave l i n e s  a r i s i n g  from the cis-conformation of CH CH COH suggests 

t o  use a pa i r  of connected c i s - l i nes  fo r  the inves t iga t ions  on this compound. 
The frequency range of our spectrometer together with consideration of the in-  

t ens i ty  of the s ignal  l i n e ,  the dipole matrix element of the pump l i n e ,  and 

the pump power ava i lab le  lead  to  the se lec t ion  of the following double 
resonances : 

3 2  

202 -4 211 = u 
PWP 

= 13474.9 MHz 

= 33347.0 MHz signa 1 2114 312 = u 
-+ 312 = u = 15778.6 MHz 

'03 Pump 

Recorder t r aces  of the double resonance s ignal  obtained with e i t h e r  of 
the two pump t r ans i t i ons  are shown i n  Fig. 10.  It can be seen from these 

t races ,  that the double resonance v - - 202 4 211, us = 211 4 3,, i s  stronger 

than the double resonance obtained when using the 3 
l i n e .  

higher dipole moment matrix element than the 2 o2 + 211 t r ans i t i ons .  The d i s -  

crepancy was explained by observing tha t  there i s  much more pump power ava i l -  

able a t  13475 MHz than there  i s  a t  15779 MHz. 

+ 312 t r ans i t i on  as pump 
03 

This r e s u l t  is  anomalous i n  so  fa r  as the 303 + 3,, t r ans i t i on  has a 
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Double resonances of 
prop iona ldehyde 
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Pressure dependence: A s  indicated before, i t  i s  necessary t o  inves t iga te  
the pressure dependence of the double resonance s ignal  amplitude i n  order t o  
determine the pressure range i n  which a double resonance o f  propionaldehyde 

can be obtained. Consequently, a pressure study was undertaken a t  room tem- 
perature ,  Fig. 11, shows three t r aces  corresponding t o  the lowest, opthum, 

and h ighes t  pressure a t  which CH CH COH can be iden t i f i ed .  The overa l l  pressure 

dependence a t  room temperature i s  shown graphica l ly  i n  Fig. 12. Unfortunately 

no equivalent diagram could be obtained f o r  the overa l l  pressure dependence a t  
dry i c e  temperature due t o  erroneous readings on the commercial pressure gauge 
used. 

3 2  

A s  i s  seen from Fig. 12,  propionaldehyde can be observed between 2pand 
150p with the optimum signal  occurring a t  a pressure of 25 pHg. 

Line Shape: Theoret ical ly ,  a s p l i t t i n g  o f  the double resonance l i n e  i n t o  
a c lose ly  spaced doublet could occur due t o  the in t e rac t ion  of the hindered 

in t e rna l  r o t a t i o n  of the me thyl-group with the overa l l  ro t a t ion  of the molecule. 

However, even a t  very low pressure no such s p l i t t i n g  can be observed. This 
r e s u l t  i s  explained by the height  o f  the po ten t i a l  barrier (2 .2  k cal/mole) 

which reduced the s p l i t t i n g  between the A/E components of the observed ground 
s t a t e  t r ans i t i on  t o  l e s s  than 0 . 1  MHz. 
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Propionic ac id .  - Propionic Acid, Fig. 13,  CH CH COOH, i s  not  only chemi- 3 2  
ca l ly ,  but a l s o  spectroscopical ly  c lose ly  r e l a t ed  t o  the propionaldehyde de- 
scr ibed i n  the previous sect ion.  It i s  s t rongly believed tha t  CH CK COOH 

e x i s t s  i n  the vapor phase i n  two rotameric forms. However, s o  far  only the 

cis-form ( a l l  heavy atoms co-planar) has been iden t i f i ed  i n  the microwave 
spectrum. 

a x i s  of the i n e r t i a l  tensor and i t s  magnitude i s  1.46D. 
i n  conjunction with the asymmetry of X- -.72 allows f o r  many t rans i t ions .  

are, furthermore, four  low ly ing  v ibra t ions  which give r i s e  t o  ten (10) de- 
tec tab le  sa te l l i t e  spectra .  The overa l l  spectrum is ,  therefore ,  very r i c h  and 
contains -1500 assigned l i n e s  between 1 2  and 40 GHz. 

l i n e s  there  a r e  only a few double resonance connected t r ans i t i ons  within the 

frequency range of the spectrometer. Since the absolute  i n t e n s i t y  of the 
l i n e s  i s  considerably smaller than i n  propionaldehyde, i t  was necessary t o  

s e l e c t  t r ans i t i ons  with J-values l a r g e r  than J = 3 i n  order t o  obtain a reason- 

ab ly  good double resonance. The f i n a l  choice was: 

3 2  

The dipole moment of this  form i s  approximately parallel  t o  the - b 

The % se lec t ion  r u l e  

There 

Select ion of double resonances: Although there  e x i s t s  a g r e a t  number of 

1) 615 + 6,4 = 17269.0 = u 624 + 633 = 30436.6 = v S 
P 

525 + 6,5 = 28186.3 = v 
S 2 )  615 + 624 - 17269.0 = v 

P 

These two double resonances a r e  shown i n  Fig. 14. Note tha t  the pump t ran-  
s i t i o n  i s  the same f o r  both s ignal  l i n e s .  

Pressure dependence: I n  order t o  determine the optimum pressure condition 
f o r  the detect ion of CH CH COOH the s ignal  s t rength of the R-branch t r ans i t i on  

3 2  
a t  28186.3 MHz was studied f o r  d i f f e r e n t  pressures.  
corder t r aces  obtained i n  t h i s  inves t iga t ion  a r e  shown i n  Fig, 15 and the over- 

a l l  pressure dependence i s  summarized i n  Fig. 16,  
ac id  can be observed under pressures  varying from 1 IrsIg t o  150 pHg with the 

optimum pressure occurring - 10  p -  15 vHg. 
-22'C i t  is  not  possible  t o  observe microwave l i n e s  a t  dry i c e  temperature. 

3 2  

Three cha rac t e r i s t i c  re -  

It is  apparent t h a t  propionic 

Since propionic ac id  s o l i d i f i e s  a t  

A very ser ious  drawback i n  the inves t iga t ion  of CH CH COOH was i t s  
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us = 624 -+ 63j = 30436.6 MHZ 

up = 615 * 624 = 17269 MHZ 

us - - 524 4 6,5 = 28186.4 MHz 

up = 615 + 624 = 17269 MHz 

Fig. 14 

Double resonances of propionic ac id .  
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adsorption on the walls of the waveguide c e l l .  For this reason an addi t iona l  

uncertainty of a t  least  10 llIJg i n  the pressure values should be allowed on top 

of the uncertainty due t o  the va r i a t ions  of the cha rac t e r i s t i c s  of the P i ran i  

gauges used i n  this  work. 
Line shapes: The only complication i n  the shape of  propionic acid l i n e s  

could a r i s e  from the i n t e r n a l  ro t a t ion  of the methyl-top. However, due t o  the 

barrier height  of  2.3 K ca./mole th i s  hindered r o t a t i o n  does not  a f f e c t  the 

ground state l i n e s ,  they are a l l  s ing le t s .  It i s ,  therefore ,  possible  t o  ob- 
t a i n  symmetrical double resonance l i n e  shapes. 
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(10 )  
N-Ch1oropropane.- I n  the gas phase, normal propyl chloride 

CH CH CH C 1 ,  exists i n  two rotameric conformations, a trans-form 

heavy atoms form a staggered planar chain) and a gauche form ( i n  
3 2 2  

Fig. 171, 
( i n  which the 

which the 
Unlike pro- CH2CO-group i s  ro t a t ed  by - 120' from the t ransconfigurat ion) .  

pionaldehyde and propionic a c i d  the two rotamers are o f  roughly equal energy. 

The microwave spectrum of the near ly  symmetric transform shows only 

-R-branch t r a n s i t i o n s  spaced by - 4.5 GHz. The gauche spectrum i s  stronger 'a 
due t o  the s ta t i s t ica l  weight o f  two, and r i c h e r  due t o  t he  higher asymmetry 

of t h i s  conformation. 

topic  species o f  the  chlorine atom (C135 - 758, C137 - 25%). 
of the chlorine nuclear quadrupole moment with ove ra l l  r o t a t i o n  produces a 

f ine  s t r u c t u r e  i n  the microwave l i n e s  o f  t h i s  compound. There i s  i n  addi t ion,  

the low lying s k e l e t a l  t o r s ion  and the methyl tors ion.  These three f a c t s  
make the spectrum of  CH CH CH C 1  r i c h  and complex. 

I n  addi t ion t o  the existence o f  two rotameric forms there  are two iso-  
The in t e rac t ion  

3 2 2  
Selection of double resonances: The s p a r s i t y  and spacing of the t r ans i -  

t i ons  a r i s i n g  from the  trans-conformation of n-propyl chloride makes i t  ad- 

visable  t o  s e l e c t  a double resonance i n  the stronger and r i c h e r  gauche- 
spectrum f o r  the i d e n t i f i c a t i o n  of t h i s  compound. However, the  t ab le  o f  ob- 

served gauche l i n e s  given i n  the o r i g i n a l  paper does not  contain any connected 
low J t r a n s i t i o n s  coinciding with the frequency ranges o f  our spectrometer. 
It was, therefore ,  necessary t o  r ep red ic t  the spectrum o f  gauche - CH CH CH C 1  

f o r  the  frequency range from 12  GHz t o  40 GHz. 

t a t i o n a l  constants o f  the more abundant C135 -species were used and the e f f e c t  
o f  the quadrupolar nucleus on the r o t a t i o n  spectrum were omitted for simplici ty .  

A c r i t i c a l  examination of the predicted t r a n s i t i o n s  indicated t h a t  the double 

resonance connections l i s t e d  i n  TABLE I11 ought t o  be the most favorable cases 
f o r  our purposes and shown i n  Fig. 18. 

3 2 2  
I n  t h i s  calculat ion the ro- 

The s igna l  amplitude of the n-propyl chloride double resonance t r a n s i -  
t i on  was studied f o r  d i f f e r e n t  sample pressures a t  room temperature and dry 

i c e  temperature. Three typical  recorder t r aces  corresponding t o  the low 
pressure l i m i t  o f  d e t e c t a b i l i t y ,  the optimum pressure and the high pressure 

l i m i t  a r e  reproduced i n  Fig. 19 .  Fig. 20 and Fig. 21 summarize the Overall. 
pressure dependence as obtained i n  these experiments. 

It i s  apparent from these f igu res  t h a t  n-propyl chloride can be detected 
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Fig. 18 

Observed double resonances of  n-propyl chlor ide.  
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TABLE 111. PREDICTED DOUBLE RESONANCES FOR N-PROPYL CHLORIDE 

Pump Line 

Frequency" 

Transit ion MHZ 

12775 

14648 

Dipole 
Select ion 

Rule 

Pb 

wb 

Connected Signal Line 

Frequency" 

MHz 

30509 
31964. 

3 6423 

38 297 

30678 

36423 

38297 

Dipole 
Selection 

Rule 

IJa 

w 

w 

w 

Fig. 1; 

a 

b 

c 

- 

d 

e 

- 

*These a r e  the predicted absorption frequencies f o r  a r i g i d  asymmetrical 
ro to r  without quadrupole f i n e  s t ruc tu re .  

i n  the pressure range from 5 pHg t o  120 pHg with the optimum signal  occurring 
f o r  pressures  around - 30 pHg. The optimum pressure,  as well as the overa l l  

pressure dependence of the s igna l  amplitude, appear t o  be temperature inde- 

pendent. The absolute  enhancement of the s ignal  when changing from room tem- 
perature  t o  dry i c e  i s  of the order of 5 to 10. 
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Methylene chloride!’;) Compared t o  the propane der iva t ives  described i n  
the previous sec t ions ,  methylene chlor ide,  CH C 1  (F ig .  22) i s  a compara- 

t i v e l y  small and r i g i d  molecule. 
i ts  dipole moment o f  1.62D oriented along the b- a x i s  of the i n e r t i a l  tensor .  

The exis tence of two i so topic  species  of Chlorine occurring with a na tura l  

abundance o f  3 : l  g ives  r i s e  t o  two d i f f e r e n t  s e t s  of microwave l i n e s  with the 

C135 spectrum being the s t ronger  one. Many o f  the microwave l i n e s  of methyl- 
ene chlor ide a r e  s p l i t  i n t o  mul t ip l e t s ,  frequency t r i p l e t s .  This f i n e  s t ruc-  
tu re  is due t o  the in t e rac t ion  of the nuclear quadrupoles of the two equiva- 

l e n t  chlor ine atoms with the overa l l  ro t a t ion  of the molecule. 

2 2  
It i s  a near ly  pro la te  symmetric top with 

- 

Select ion of double resonances : Unfortunately the microwave papers 
on methylene chlor ide (CH2C12) do not  l i s t  any p a i r  of connected t r ans i t i ons  

usable f o r  double resonance experiments. A choice had, therefore ,  t o  be made 
between reca lcu la t ing  the e n t i r e  spectrum up t o ,  say J = 1 2  (as had t o  be done 

f o r  n-propyl chlor ide)  and ca lcu la t ing  only a few low J l i n e s  known t o  have 
common energy l e v e l s  and double resonance connections su i t ab le  f o r  our spec- 

trometer. 
ing double resonance p o s s i b i l i t i e s  : 

For s impl ic i ty  the l a t t e r  procedure was tr ied yielding the follow- 

-3 51 u = 35067.0 MHz = Ooo 
S 

U = 15911.9 MHz - 111 -t 220 
P 

2) = 29193.5 MHz - 202 4 211 
S 

Subsequent experimental examination showed (Fig.  23) that both double 
resonances could indeed be obtained, the f i rs t  one giving a b e t t e r  s igna l  t o  
noise  r a t i o .  This (ll1 -3 220) -, (Ooo -3 111) double resonance was considered 

s t rong enough f o r  our purposes and was consequently used throughout the f o l -  

lowing s tages  of t h i s  research. 
Presswe dependence : A n  inves t iga t ion  i n t o  the pressure dependence of 

the double resonance s igna l  amplitude was performed i n  the ea r ly  s tages  of 

t h i s  pro jec t .  After the incorporation of the phase-lock u n i t  and the r e s u l t -  

ing improvement i n  signal/noise of the double resonance system, th i s  pressure 

dependence was re- invest igated and the r e s u l t s  obtained e a r l i e r  were con- 
firmed. Three typ ica l  t races  obtained i n  the second run a r e  shown i n  Fig. 24 
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= 35067.0 MHz 

= 15911.9 MHz 
VS = OOO * 51 
"P = 51 -8 220 

45cL 

Fig.  24 

Methylene Chloride. Double resonance signals f o r  
th ree  selected gas pressures.  
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and the ove ra l l  behaviour i s  summarized i n  Fig. 25. 

One s t r i k i n g  fea ture  of t h i s  curve i s  that  the optimum double resonance 

s igna l  occurs a t  - 50 $I&, whereas the three previous molecules had the op- 

timum pressure range a t  - 25 kHg. Secondly: the CH C1 double resonance can 
be detected up t o  considerably higher pressures  than was the case f o r  the 

2 2  

three propane der iva t ives .  

Line shapes: A s  can be  seen from the t races  reproduced i n  t h i s  sec t ion  

there  i s  no detectable  f i n e  s t ruc tu re  i n  the Ooo + 111 t r a n s i t i o n  used as 
double resonance s ignal  l i n e .  This r e s u l t  i s  i n  agreement with the r e s u l t s  

of reference 1 

t h i s  t r ans i t i on .  The absence o f  f i n e  s t ruc tu re  lends addi t iona l  support t o  
the se lec t ion  of the Ooo -, 1 

balanced double resonance l i n e  shape t o  be obtained. 

according t o  which the quadrupole in t e rac t ion  i s  negl ig ib le  i n  

t r ans i t i on  as the s ignal  l i n e  and enables a 11 
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Dimethyl sulf idL?2j  Dimethyl su l f ide ,  the s t ruc tu re  of which 

Fig. 26, concludes the group of f i v e  molecules t o  be invest igated 
research contract .  

(CH ) S i s  a p ro la t e  asymmetric ro to r ,  and i t s  dipole moment 3 2  

i s  shown i n  ‘4 

under t h i s  

of 1 . 5 0 ~  
coincides with the b- a x i s  of the i n e r t i a  tensor.  The values of the ro t a -  
t i ona l  constants are such as t o  allow low J, R and Q branch t r ans i t i ons  i n  the 

1 2  GHz - 40 GHz range, 

Although small, dimethyl su l f ide  i s  a spectroscopical ly  in t e re s t ing  mole- 
cule  becasue of the presence of two equivalent methyl groups which exhib i t  

hindered in t e rna l  ro t a t ion .  The in t e rac t ion  of these in t e rna l  motions with 

each other  and with the overa l l  r o t a t i o n  cause the microwave l i n e s  t o  s p l i t  

i n t o  mul t ip l e t s  ( t r i p l e t s  and qua r t e t s ) .  

Select ion of double resonances of dimethyl su l f ide  o f f e r s  a t  l e a s t  two 
low J double resonances compatible with the frequency range of our spectro- 
meter; they are: 

u = 303 + 312 = 17875.2 MHz 
P 

A s  can be seen from Fig. 27 both these double resonances could be ob- 

ta ined with a good s igna l  t o  noise r a t i o ,  the (,303 --3 312) (312 .+ 321) double 

resonance being the s t ronger  one. This r e s u l t  agrees  with what one would ex- 
pec t  on the basis o f  es tab l i shed  theory. Since the dimethyl su l f ide  double 
resonance l i n e s  were considerably s t ronger  than the double resonances observed 

i n  any of the o ther  four  molecules a search f o r  more intense high J con- 
nect ions was considered unnecessary. 

Pressure dependence: The inves t iga t ion  of the double resonance s igna l  
s t rength  as funct ion of the sample pressure was made f o r  both room tempera- 

t u re  and dry i c e  temperature. Three t races ,  corresponding t o  the optimum 
pressure and the high and low pressure l i m i t s ,  a r e  included f o r  both tempera- 

tu res ,  Flg. 28 and Fig. 29. (The apparent constancy i n  the s igna l  amplitude 
on the three t r aces  of the dry i c e  run i s  due t o  a change i n  the s e n s i t i v i t y  
s e t t i n g s  of the spectrometer.)  

i n  Fig.  30. 
The pressure curve f o r  temperature is shown 
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Dimethyl sulf ide.  Double resonance signals f o r  optimal and 
limiting pressure values. Dry ice temperature. 
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The pressure behaviour o f  dimethyl su l f ide  resembles the one i n  methyl- 

ene chlor ide insofar  that  the optimum signal  occurs around 50 pHg and that the 

s igna l  s t rength decreases more slowly than f o r  the propane der iva t ives  when 

the sample pressure i s  increased. A s  a consequence, (CH ) S can be observed 
a t  pressures  up t o  400 pHg. 

3 2  

Line shapes: A t  high and intermediate pressures  a balanced double 
resonance s igna l  can be obtained f o r  ( C H  ) S. When the pressure i s  decreased 

below 10  pHg, the l i n e  starts s p l i t t i n g  up i n t o  a c lose ly  spaced mul t ip le t .  

A s  has been mentioned above, t h i s  s p l i t t i n g  i s  due t o  the in t e rna l  ro ta t ion  
o f  the two methyl groups. 
t i on  between the mul t ip le t  components is o f  the order of . 5  MHz. 

3 2  

In  the 3,, -, 321 t r ans i t i on  used here ,  the separa- 
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Summary. - Before proceeding t o  di luted samples and mixtures i t  seems 
convenient’to summarize the r e su l t s  obtained on the f ive  contract  molecules. 

m e  frequency, pressure, and temperature data obtained on the pure samples 

are l i s t e d  i n  TABLE IT. 

I 

TABLE IV. SUMMARY OF DATA OBTAINED ON PURE SAMPLES 

Molecule 

CH3 CH2C OH 

CH3CH2COOH 

CH3CH2CH2C 

CH2C1 

( CH3 1 2s 

Selected Double 
Resonances 

u MHz 
P 

202 + 211 
= 13474.9 

606 615 
= 14648. 

I11 + 220 
= 15912. 

P re  s sure 
Min. Opt.  Max. 

2 

1 

5 
5 

10 

10 

25 

15 

30 
30 

50 

50 

150 

150 

120 

120 

400 

400 
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Measurements d i lu ted  samples. - The experiments reported i n  t h i s  sec t ion  
a r e  mainly intended t o  furn ish  information about the smallest  quant i ty  of gas 

de tec tab le  by the double resonance technique. 

The eas i e s t  approach t o  the problem in hand is t o  progressively d i l u t e  

one of t he  samples i n  a i r  and then t o  check, down t o  which degree of d i lu t ion  

the double resonance s igna l  can s t i l l  be detected by our spectrometer. 

tunately,  however, not a l l  f i v e  contract  molecules were su i t ab le  f o r  this  

simple procedure. Propionic acid,  f o r  example, has been found t o  be s o  heavily 

absorbed on the walls of the  waveguide t h a t  a large amount of the sample had 

t o  be admitted t o  the c e l l  before a s t a b l e  pressure was obtained. 

th i s  it was considered poin t less  t o  prepare a d i lu ted  sample of th i s  compound. 

The gas concentration i n  the c e l l  might have turned out t o  be as much as t e n  

times smaller than i n  the  o r ig ina l ly  prepared sample. A similar (but  by far 

not as pronounced) behavior had been observed on n-propyl chlor ide.  
reason the  research e f f o r t  was centered on d i lu t ed  samples of (CH ) S, CH CH CHO, 

and C H 2 C 1 2 .  

( see  Table I V )  were observed f o r  d i f f e ren t  pressures on samples d i lu ted  i n  a i r  
t o  l:lO, 1:100, and 1:300. The pressure curves r e su l t i ng  f rom these experiments 
a r e  shown i n  F igs .  31 t o  33. Recorder t r aces  of the s igna ls  obtained on the 
most  d i lu ted  samples studied are also reproduced along with the corresponding 
t r aces  of the pure samples (F ig .  34) .  

Inspecting F igs .  31 t o  34, the following qua l i t a t ive  changes due t o  d i l u -  

Unfor- 

I n  view of 

For t h i s  

3 2  3 2  
The double resonance t r ans i t i ons  cha rac t e r i s t i c  fo r  these molecules 

t i o n  a r e  obvious: 

1. The signal/noise ratios do not decrease proport ional ly  t o  the degree 

of d i l u t i o n .  They appear t o  change more slowly. 

2 .  I n  propionaldehyde, there  occurs a shif t  of the  optimum pressure 

range t o  higher values, and the peak of  the s igna l  versus pressure 

curve broadens out when going f r o m  the pure t o  the 1:lOO di lu ted  

sample. No fu r the r  broadening is observed, however, when changing 

from 1:lOO t o  a 1:300 d i lu t ed  sample. 

I n  CH2C12 and (CH ) S no s h i f t  or broadening of  the optimum pressure 

range can be dis t inguished.  

A quani ta t ive  explanation of these r e s u l t s  necess i ta tes  an exact calcu-.  

l a t i o n  of the apparent double resonance s igna l  as a funct ion of a l l  the para- 

meters contr ibut ing t o  the  l i n e  shape and is ,  therefore ,  beyond the  scope of 

3 .  3 2  
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Fig .  31 

Propionaldehyde. Pressure dependence of double resonance s igna l  
amplitude f o r  pure sample and samples d i lu t ed  i n  air. 
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Fig. 32 

Methylene Chloride. Pressure dependence of double resonance 
signal amplitude for pure sample and samples diluted i n  a i r .  
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Fig.  33 

Dimethyl su l f ide  . Pressure dependence of double resonance 
s igna l  amplitude f o r  pure sample and samples d i lu ted  i n  a i r .  
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Comparison between double resonance signals of 
pure samples and samples di luted i n  a i r .  
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this r epor t .  

qua l i t a t ive ly  understood by remembering that d i lu t ing  a sample can have a 
profound e f f e c t  on the Van de Waals forces  ac t ing  on the molecules under in-  
vest  iga t i o n .  

a t  it s u f f i c e  here t o  ind ica te  t h a t  much of the e f f e c t  can be 

On the  bases of the  experiments reported,  the question ra i sed  a t  the 

beginning of this sec t ion  has t o  be answered a s  follows: 
at OUT dfsposal double resonance l i n e s  can be picked up from samples which a r e  

1:3OO d i lu t ed  i n  a i r .  

With the instrument 

The above quoted value f o r  the threshold of  d e t e c t a b i l i t y  could be pushed 

down by a f ac to r  of > 5 i f  some technica l  refinements were made t o  the spec- 

trometer.  I f ,  i n  addi t ion ,  a preconcentration technique was used, the  thresh-  

o l d  of d e t e c t a b i l i t y  could be reduced t o  the  order of 10 @g. 

77 



Measurements mixtures of pure samples. - After  the bas ic  invest igat ions 

on pure samples and the s tudies  on d i lu t ed  samples there  i s  enough information 

ava i l ab le  f o r  t e s t i n g  the effect iveness  o f  the double resonance technique f o r  

ident i fying the components of a mixture of  gases. 
I n  planning t h i s  experiment, one has t o  mke sure t h a t  the t o t a l  pressure 

obtained when mixing the gases is not higher than the highest pressure,  a t  
which the  signal a r i s i n g  from the  component with the  weakest l i n e s  can s t i l l  
be dis t inguished from the background noise .  When t h i s  condition is violated 

one w i l l  not be ab le  t o  observe the double resonance ind ica t ive  of t he  compound 

whose pressure is exceeded. 
Guided by th i s  consideration i n  conjunction with the s igna l  versus pres- 

sure curves obtained f o r  the pure and d i lu ted  samples o f  t he  previous sect ions,  
t he  p a r t i a l  pressures of  the three  gases mixed together i n  the first experi-  
ment were se lec ted  as l i s t e d  i n  the  second c o l m  of Table V.  A t  the r e s u l t -  
ing t o t a l  pressure of N 50 p,Hg a l l  t h ree  double resonances were obtained as 

can be seen from Fig .  35. An analogous experiment was l a t e r  performed on a 
mixture o f  four compounds with p a r t i a l  pressures adjusted as given in Table V I .  

The r e s u l t s  of t h i s  experiment a r e  shown i n  F ig .  36. 

- 

The apparently a r t i f i c i a l  pressure se l ec t ion  is d i c t a t ed  by the  limita- 
t i o n  in  s e n s i t i v i t y .  

s p e c i f i c i t y  of t he  double resonance technique. 

t h i s  point  i n  mind it is seen that each double resonance is  f r ee  f r o m  any 

interference due t o  adjacent l i n e s  of the same o r  any of  the  other th ree  com- 

pounds present i n  the  mixture. 

most important property of microwave double resonance spectroscopy. Even in  

t h e  presence of severa l  compounds producing numerous and possibly in t e r f e r ing  

l i n e s  ( a l l  of which would contr ibute  t o  the  s igna l s  observed on a Stark  spec- 

trometer) the double resonance s igna l  w i l l  no t  be obscured o r  f a l s i f i e d  and a 
s ing le  double resonance connection w i l l  unambiguously pinpoint the  molecule 

from which the  s igna l  a r i s e s .  

But the point  t o  be examined here i s  the  s e l e c t i v i t y  and 

Examining the f igures  with 

This f a c t  represents  t he  most d i s t i n c t  and 
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TABU V. - EXPERIMENTAL DATA FOR DOUBLE RESONANCE EXPERIMENT 
ON MIXTURE OF THREE COMPOVNDS 

Compound 

CH3CH,COOH 

CH3CH2COH 

( CH3 12s 

Part  ia 1 P U P  Signal 
Pressure Frequency Frequency Signal Strength Fig. 

i n  mg i n  MHz i n  MHz Arbitrary Units 35 

10 17269.0 = 30436.5 = 3 a 
615 -+ 624 624 633 

5 13474.9 = 33347.0 = 4 b 
211 - 202 

3,3 + 312 

211 * 312 

312 + 321 
35 17875.2 = 29058.5 = 14 C 

TABLE V I .  - EXPERIMENTAL DATA FOR DOUBU RESONANCE EXPERIMENT 
ON MIXTURE OF FOUR COMPOUNDS 

S igna 1 
Frequency 

i n  MHz 

30436.5 = 

624 * 633 
33347.0 = 

211 312 

~ Compound 
Signal Strength 
Arbitrary Units 

CH3CH2COOH 

CH3CH2COH 

(CH3 12s 

CH3CH2CH2C1 

Pa r t i a l  
Pres sur  e 

i n  liHg 

12 

7 

14 

12 

Pump 
Frequency 

in  MHz 

17269.0 = 

615 * 624 

13473.9 = 

202 - 211 

303 * 312 

17875.2 = 

12775 = 
505 1, 5i4 

2 

3.5 

30508.0 = 

404 505 

I 

8 
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Fig .  36 

Double resonance s igna ls  obtained i n  a mixture 
of f o u r  gases .  
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Instrumental parameters. - Very l i t t l e  has been sa id  s o  far  about the  

performance o f  the spectrometer o r  possible  repercussions of instrumental  

l imi ta t ions  on the r e s u l t s  of  the previous sec t ions .  The main questions 

a r i s i n g  here are:  What is the ul t imate  s e n s i t i v i t y  of the double resonance 

spectrometer, could it be improved, and how does it compare with conventional 
S ta rk  modulated spectrometers? 

The experiments and calculat ions t o  be reported i n  the following para- 
graphs w i l l  th row some l i g h t  onto these questions.  

S igna l  amplitude as a function of pump power: The amplitude of a double 
resonance signal depends on the  change i n  the r e l a t i v e  populations of r o t a -  

t i o n a l  energy l eve l s ,  which is produced by the ''pump" r ad ia t ion .  The magni- 
tude of t h i s  change (devia t ion  from the Boltzmann d i s t r ibu t ion )  is p r o p o r t i o n a l  

t o  the square of the  e l e c t r i c  f i e l d  s t rength ,  E& i , e .  the power densi ty ,  - P, 

of the  pump rad ia t ion  i n  the absorption ce l l . ( '3 )  

Let us, therefore ,  es t imate  the power densi ty  a t  the frequency of  a 
typ ica l  pump t r a n s i t i o n ,  say a t  the  202 -+ Zll t r a n s i t i o n  of  propionaldehyde 

a t  up .53 X e . s .u .  With this value one obtains a s  the  smallest  pos- 

s i b l e  difference between the populations o f  the 202 - and 211 - l eve l  of pro- 

pionaldehyde with - 2,, l 2  - 40 X e . s . u .  , I- ,., lo-' sec .  

(%02 - %I) P Z -  A(".. - %l) 

where 

P = di f fe rence  i n  populations when 
pump rad ia t ion  is  applied (%02 - n,ll) 

- n, ) B  = difference i n  populations accord- 
11 ing t o  Boltzmann d i s t r i b u t i o n  02 

This r e s u l t  means that even with the very opt imist ic  assumption contained i n  
the above ca lcu la t ion ,  we a r e  not ab le  t o  appreciably sa tu ra t e  the pump t r a n s i -  

t i on .  The double resonance s igna ls  observed on our  spectrometer may, therefore ,  
be severa l  times weaker than the s igna ls  which could be obtained if s u f f i c i e n t  
pump power were ava i l ab le .  

81 



The v a l i d i t y  of t h i s  statement is supported by an experiment in which 

the s igna l  amplitude of the propionaldehyde double resonance was measured as 
a funct ion of the  pump power. The l a t t e r  was varied w i t h  an a t tenuator  in- 

ser ted  between the i so l a to r  and the  d i r ec t iona l  coupler i n  the P-band arm i n  

f ron t  of the c e l l .  The c r y s t a l  current  on the P-band detector  behind the 

c e l l  was taken as a measure f o r  the amount of pump power within the  absorption 

c e l l  (Fig.  37).  

S igna 1 Amp1 i tude 

Pump power oc 
c rys t a l  current  

Fig.  37 

Double resonance s igna l  amplitude as a fwnction 
of pump power. 

The r e s u l t  of t h i s  experiment is represented i n  Table V I 1  and shown graphi- 

ca l ly  i n  F ig .  38. 
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4 2 3 

Fig .  38 

Double resonances of exci ted states 
of propionic a c i d .  
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TABLE V I I .  - DOUBLE RESOJUNCE SIGNAL AMPLITUDE 
AS FUNCTION OF PUMP POWER 

X-tal  Current 

(mpump Power) 

200 

190 

160 

13 5 
100 

7 0  

S igna 1 Amp 1 i tude 
i n  

Arbi t rary Units 

8.3 

7 . 9  
6.6 
5.6 
4.2 

2 . 9  

The l i n e a r  increase i n  s igna l  amplitude with increase i n  pump power is  con- 
c lusive evidence tha t  even a t  the highest  ava i lab le  pump power we a r e  s t i l l  
f a r  away from sa tu ra t ion  and, therefore ,  from the op t ima l  signal amplitude. 

The ult imate s e n s i t i v i t y  of the 

spectrometer can be estimated by comparing the observed signal/noise ra t io  
of a l i n e  w i t h  the  calculated absolute  in t ens i ty  of  t h i s  t r a n s i t i o n .  We 
selected the 2 i l  

Estimate of the ul t imate  s e n s i t i v i t y :  

3,, t r a n s i t i o n  of propionaldehyde f o r  t h i s  purpose. 

Calculation o f  the absolute  l i n e  in t ens i ty  

where N = number of molecules per cc i n  c e l l  
f = f r a c t i o n  of molecules i n  lower r o t a t i o n a l  l eve l  

= dipole  moment matrix element 
'lij 

u = t r a n s i t i o n  frequency 

Au = half width of l i n e  
k = Boltzmann constant 

c = veloc i ty  of l i g h t  
T = temperature 

84 



Assuming Av = 25 MHz/mm 

and taking N = 3.2 X lbf6 molecules/c$ a t  1 mm Hg 

T = 300" K 
1) = 3.3347 x 101O sec-1 

we obtain a s  intermediate r e s u l t  

Calculat ing the f r a c t i o n  of molecules i n  the 211 s t a t e ,  we have t o  take 

in to  account t h e  existence o f  two isomers, the presence of two low ly ing  v i -  
brat ions and the  nuclear s t a t i s t i c a l  weight a r i s i n g  from the 2 s e t s  of  2 

equivalent hydrogen atoms, and obtain 

f - 10-5 . 

Theref ore 

By comparing th i s  number with the  signal/noise ra t io  of  the  propionalde- 
hyde t r aces  obtained on the pure sample (F ig ,  11) o r  with the double resonances 

obtained on the 1:300 d i lu t ed  sample (Fig.  34) it is judged that the ul t imate  
s e n s i t i v i t y  of the spectrometer is of the order of lo-' cm- l .  
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Comparison with S tark  spectra:  I n  order t o  make a va l id  comparison be- 
tween the ul t imate  s e n s i t i v i t y  provided by the  double resonance method on one 
s i d e  and the S t a r k  modulation technique on the other side, it would be neces- 
s a r y  first t o  use a spectrometer capable o f  both methods i n  order t o  eliminate 
a l l  differences which might otherwise a r i s e  from the  use of d i f f e ren t  absorp- 
t i o n  c e l l s  o r  d i f f e r e n t  e lec t ronic  equipment and, secondly, t o  make su re  that 

the  microwave t r a n s i t i o n s  chosen can be f u l l y  modulated i n  both cases (power 
requirement i n  double resonance, e l e c t r i c  f i e l d  requirement i n  Stark spectro-  

scopy.) If such a n  idea l  experiment could be made it would turn  out that  both 
methods a r e  essent ia l ly"  equivalent as far  as the ul t imate  s e n s i t i v i t y  is  con- 
cerned. 

Af te r  t h i s  has been c l a r i f i e d  it w i l l  be obvious t h a t  the d i f fe rence  en- 

countered i n  the  experiments t o  follow is mainly due t o  the difference i n  

e lec t ronic  equipment and c e l l  length between the double resonance spectrometer, 

[bu i l t  by RSI f o r  NASA, Langley] and the S ta rk  spectrometers with which the 

former i s  t o  be compared. 

Excited s t a t e s  of propionic acid:  The exci ted states of the  to r s iona l  

v ibra t ion  i n  propionic ac id ,  which have previously been observed and assigned 

on a S ta rk  spectrometer, o f f e r  an excel lent  opportunity f o r  a s e n s i t i v i t y  

comparison between the  double resonance and S ta rk  spectrometer. An attempt 
was made, therefore ,  t o  obtain double resonances f o r  a l l  t he  excited s t a t e s  

f o r  which the  s.ignal l i n e  had been observed on the Stark-modulated instrument. 
The double resonance connection used here was 

and the  respect ive frequencies of these t r ans i t i ons  a r e  l i s t e d  i n  Table V I I I .  

The double resonances observed a r e  shown i n  Fig.  38. 

"Noticeable differences have t o  be expected f o r  a c e r t a i n  type o f  low-J, R -  
branch t r ans  it ions . 
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TABLE V I I I .  - DOUBLF, RESONANCE CONNECTIONS FOR 
EXCITED STATES OF PROPIONIC ACID 

Vibrat  iona 1 
S t a t e  

Ground s t a t e  

VT = 1 

VT = 4 

VT = 2 

VT = 3 

Pump Freq. Signal  Freq. 
mz mz 

4 5  624 I 624 -4 633 

17,269 I 30,436.5 

30,140.0 17,093 

16,910 2 9,82 9.6 
16,715 29,500.2 

16,506 29,145.7 

1 

With an  average energy separat ion of N 65 cm-l between successive s t a t e s  
of the C-C-C-torsional v ibra t ion  ( T ) ,  t he  in t ens i ty  of the v ibra t iona l  s a t e l -  

l i t e  decreases by a f ac to r  of  - .7 per exci ted s t a t e .  
V = 4 t r a n s i t i o n  is  therefore  

The in t ens i ty  of the 

t of the ground s t a t e  l i n e .  

Inspection of the  t r aces  shows t h a t  the VT = 1 double resonance was ob- 
tained with a b e t t e r  signal/noise r a t i o  than the ground s t a t e  double resonance. 

This can be explained only by assuming that there  is grea te r  pump power a v a i l -  

ab l e  a t  t h e  pump frequency of VT = 1 than there  is a t  VT = 0 .  

amination of the  power output of the P-band sweeper has proven that  t h i s  is 

the  cor rec t  explanation f o r  the observed anomaly,. 

t races  a r e  ava i lab le  t h a t  could be reproduced here f o r  comparison. However, 

the simple f a c t  that  t h e  s igna l s  from the excited state l i n e s  could indeed be 

observed represents  enough evidence tha t  t he  double resonance spectrometer 

preserves the  s e n s i t i v i t y  of a S tark  spectrometer. 

Subsequent ex- 

Unfortunately no S ta rk  

Spectra of propionic ac id  and d i lu t ed  propionaldehyde: A second possi-  

b i l i t y  t o  obtain a s e n s i t i v i t y  r e l a t i o n  between the double resonance and S ta rk  
spectrometer is t o  compare the  spectra  of d i lu t ed  samples o r  o ther  samples 

known t o  have weak absorpt ion l i n e s .  

d i lu t ed  propionaldehyde and t h e  521, 4 6 
considered good tes t -cases  and t h e i r  S t a rk  s igna l s  were, therefore ,  recorded. 

I n  F ig ,  39 t h e  S ta rk  t r aces  obtained can be compared with the  corresponding 

double resonance s igna l s .  

The 211 * 3,, t r a n s i t i o n  of 1:lOO 

t r a n s i t i o n  of propionic ac id  were 15 

From this f igu re  it is e a s i l y  seen t h a t  the signal/ 
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Fig .  39 

Comparison between double resonance s igna ls  and 
s igna ls  obtained on a S ta rk  spectrometer. 



a 

noise  r a t i o  is considerably b e t t e r  f o r  the  double resonance s igna l s .  

Summary. - The experiments and ca lcu la t ions  presented i n  t h i s  sec t ion  

can be summarized as follows: 

1. The pump power ava i l ab le  on the double resonance spectrometer is not 
s u f f i c i e n t  t o  obtain the  optimum signal amplitude. With more pump 

power a considerable improvement i n  s e n s i t i v i t y  could be obtained. 
2 .  The ul t imate  s e n s i t i v i t y  of  the double resonance spectrometer is es-  

timated t o  be of the  order of lo-’ em-’. 
3 .  There is no i n t r i n s i c  difference i n  s e n s i t i v i t y  between the  double 

resonance and S ta rk  modulation technique. However, the use of longer 
absorpt ion c e l l s  is f a c i l i t a t e d  i n  double resonance spectroscopy and 
hence a higher s e n s i t i v i t y  can be obtained with grea te r  ease than on 

a S ta rk  spectrometer.  
A comparison o f  weak absorption s igna ls ,  obtained on both a S tark  

system and the double resonance spectrometer, indicates  that t h e  

double resonance spectrometer is approximately f i v e  times b e t t e r  i n  

signal/noise r a t i o  than the  S ta rk  system t e s t e d .  

4. 
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CONCLUSION 

The invest igat ions of t h i s  repor t  show that microwave double resonance 

spectroscopy does not d i f fe r  appreciably from conventional S t a rk  spectroscopy 
when s e n s i t i v i t y  and reso lu t ion  a r e  considered. 
t i n c t  advantage over the l a t t e r  is brought about, however, by the  great s i m -  
p l i f i c a t i o n  of complex spectra  and unique s e l e c t i v i t y .  
double resonance spectroscopy al low a much faster and s t i l l  unambiguous 
iden t i f i ca t ion  of polar gases than could be achieved by the S ta rk  modulation 
technique. 

An important and very d i s -  

These two a s s e t s  a t  

The pressure range i n  which the double resonance technique can be employed 

extends from - pHg t o  - 100 pHg. This i den t i f i e s  a double resonance spec- 
trometer as a low pressure device and c u r t a i l s  i ts major drawback. 
t o  make it appl icable  f o r  t he  de tec t ion  of t r ace  contaminants i n  a n  atmosphere 

of 760 mm Hg, the sample pressure [ i .e.  t he  amount of gas t o  be detected] has 

t o  be reduced by a f ac to r  of  -lo4, r e su l t i ng  i n  a corresponding loss of 

s e n s i t i v i t y .  

In order 

It is f e l t  t h a t  research i n t o  preconcentration techniques is now needed 

i n  order t o  e l iminate  t h i s  drawback. Once t h i s  is accomplished, microwave 

double resonance spectroscopy could become a n  extremely powerful t o o l  f o r  gas 

contaminant i den t i f i ca t ion .  

Research Systems, Inc. 

236 Grove S t r e e t  
Lexington, Massachusetts 02173 MY 15, 1967 
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APPENDIX 

S ta rk  Modulated Microwave Spectrometer 

Let us assume that we have a gas o f  molecules which has only two quantum 
Further,  we assume t h a t  s t a t e s  1 and 2 separated i n  energy by (En),, = h y a .  

the  average l i fe t ime of a molecule in e i t h e r  of these two s t a t e s  is the same 

and equal t o  T, where T is  the mean time between co l l i s ions  of the  molecules. 

It is c ruc ia l  t o  note a t  th i s  point  t h a t  T is  a funct ion of pressure.  In  f a c t ,  

f o r  an idea l  gas, i f  we double the pressure T is decreased by a f ac to r  of two. 

Thus T and p ( t h e  pressure)  a r e  r e l a t ed  by the equation 

where c is some consJant whose value turns  out not t o  be important t o  us .  

Suppose now we allow a monochromatic source of r ad ia t ion  a t  frequency w t o  

impinge upon t h i s  gas of molecules, and we ask how much power i s  absorbed a t  
frequency w by the gas f rom the  rad ia t ion  f i e l d .  The r ad ia t ion  f i e l d  may be 

represented by 

E = Eo COS w t  

where Eo is a constant independent of the time 
amplitude of the r ad ia t ion  f i e l d ,  In  th i s  case the power absorbed by the gas 

a t  frequency w can be shown t o  be (reference 1, chapter 13, reference 2 )  

and is  generally cal led the 

where 

n, = number of molecules per cm3 i n  s t a t e  1 f o r  the gas a t  thermal 

equilibrium 

n, = number of molecules per c$ i n  s t a t e  2 f o r  the  gas a t  thermal 

e qu i 1 i b  r ium 
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wo = 2l-r y 2  J 

l ~ l l ~  = dipole  moment of the molecular system for  the  t r a n s i t i o n  from 
state 1 t o  2 .  

h is Planck’s constant 

E = h/2n 
The parameter lh2 Eo/2HI2 occurs f requent ly  in  the following discussion and 
s o  we def ine 

and the  absorbed power becomes 

24Yl2  hvl2 

1 + (w-wo)2  72 + 41yp 72 
Pw (absorbed) = (nl -n2) 

Note t h a t  7 depends upon the molecular system through pI2 and on the amplitude 

of the r ad la t ion  f i e l d  through Eo.  However, y is independent o f  pressure.  

Dependence of s igna l  s t rength  on power absorbed. - I n  general  f o r  S ta rk  

modulated spectrometers the s igna l  S observed depends l i n e a r l y  on the power 

absorbed s o  t h a t  we may say 

S = g P (absorbed) 
u) u) 

where g is a constant depending upon the length of the waveguide, the gain of 

the  amplif iers  and many other parameters. It tu rns  out that the  exact form 
of g is completely unimportant t o  us .  What is important t o  r e a l i z e  is that 
the  s igna l  seen on the S ta rk  modulated spectrometer is some constant multiple 
o f  Pw (absorbed).  Incident ly ,  t h i s  r e s u l t  is not obvious and i n  f a c t  i n  some 

cases is not even t r u e .  These cases w i l l  not concern us here. Thus we always 
take 
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For  low amplitude r ad ia t ion  f i e l d s  it is usual ly  the  case that 

4 1 y p  72 << 1 . 

With t h i s  approximation we m y  take 

Let us rewri te  t h i s  without using the y shorthand as  

We would l i k e  t o  p lo t  S 

and pressure.  

n,, n,, T a r e  constants.  

rad ia t ion  f i e l d  

a s  a function of w f o r  a gas a t  constant temperature 
0 

Holding temperature and pressure constant simply lnsures t h a t  

Furthermore, we also ho ld  the  amplitude Eo of the  

E = Eo COS w t  

constant and vary only i ts  frequency w. 

able  i n  Sw i s  w. 

Under these conditions the  only va r i -  

w 
S 
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There a r e  seve ra l  important points t o  note about t he  shape and character of Sh. 

/2 occurs a t  w = wo 2 1 / ~  . This follows by s e t t i n g  2 .  

and solving f o r  w. 

3 .  From ( 2 )  it fo l lows  t h a t  AWL = 2/7. 

height of the absorption s igna l .  

AwL i s  the f u l l  width a t  - half 
2 2 

We may now consider the behavior of S, a s  a function of  power and a s  a 
function of the pressure i n  the  applied r ad ia t ion  f i e l d .  

1. S as a Function of Power i n  the Field:  
w 

The power i n  a r ad ia t ion  f i e l d  of' the form 

E = E COS w t  
0 

is proportional t o  E: . That is 

Power (F ie ld)  -E: . 

Note a l s o  t h a t  Sw E: so  t h a t  we have 

'w N Power . 

The s igna l  height is d i r e c t l y  proportional t o  the power of the ap- 

pl ied f i e l d .  

derived with the approximation 

It is  important t o  remember t h a t  t h i s  r e s u l t  has been 
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Thus i f  E: becomes s o  la rge  that the above in-equal i ty  no longer 

holds S is no longer l i n e a r l y  r e l a t ed  t o  Power ( F i e l d ) .  I n  the 

case where lkz Eo/h12 T~ >, 1 the  signal is sa id  t o  be saturated 
w 

o r  s a tu ra t ion  broadened o r  power broadened. 

responds t o  a s i t u a t i o n  where the r ad ia t ion  f i e l d  i s  s o  intense 
that  the r a t e  a t  which molecules a r e  exci ted from s t a t e  1 t o  s t a t e  

2 by the f i e l d  is much grea te r  than the  r a t e  a t  which they r e l ax  
from s t a t e  2 t o  s t a t e  1 by c o l l i s i o n  processes. 

Physically t h i s  cor- 

2 .  S as a Function of Gas Pressure: w 
a .  We have 

See the quan t i t i e s  i n  the curly bracket a r e  independent of pressure.  

Thus the only pressure dependence of Smax is  i n  (nl -%) T .  

viously we noted T N l /p.  

( t h e  number of molecules per cm3 i n  s t a t e s  1, 2)  a r e  l i nea r ly  r e l a t ed  

t o  pressure.  Thus (nl -%) - p s o  t h a t  we have the important r e s u l t :  

Pre- 

To a s u f f i c i e n t  degree of accuracy nl ,  n, 

is independent of pressure . 
sItBX 

[The maximum height of the absorption s igna l  is independent of pres-  

sure .  ] 
b.  We have 

However, we a l s o  know T - l /p.  Thus 

The l i n e  width of the  absorption is d i r e c t l y  proportional t o  pressure.  
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Conclusion (Part I ) .  - The above considerations may seem tedious t o  those 

w e l l  acquainted with pressure broadening concepts i n  microwave spectrocopy o r  
t o o  brief f o r  those with no contact a t  a l l .  This presentat ion has been given 

t o  serve as a basis f o r  understanding the  double resonance l i n e  shape charac- 

t e r i s t i c s .  Further detai ls  on the  preceding can be found i n  references 1 and 2 .  

Results f o r  ordinary Stark modulation: 

1. Linewidth doubles i f  pressure is increased by a f ac to r  of two ( d i r e c t l y  
propor t iona l ) .  
Signal  height a t  peak (u, = w0) is independent of pressure.  This is 

because (nl - Q )  is d i r e c t l y  proportional t o  pressure but  T is in-  

versely proport ional .  Thus (nl - nz)  is independent of pressure.  

2 .  
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